首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph H is imbedded in a graph G if a subset of the vertices of G determines a subgraph isomorphic to H. If λ(G) is the least eigenvalue of G and kR(H) = lim supd→∞ {λ(G)| H imbedded in G; G regular and connected; diam(G) > d; deg(G) > d}, then λ(H) ? 2 ≤ kR(H) ≤ λ(H) with these bounds being the best possible. Given a graph H, there exist arbitrarily large families of isospectral graphs such that H can be imbedded in each member of the family.  相似文献   

2.
In this article, we consider the following problem: Given a bipartite graph G and a positive integer k, when does G have a 2‐factor with exactly k components? We will prove that if G = (V1, V2, E) is a bipartite graph with |V1| = |V2| = n ≥ 2k + 1 and δ (G) ≥ ⌈n/2⌉ + 1, then G contains a 2‐factor with exactly k components. We conjecture that if G = (V1, V2; E) is a bipartite graph such that |V1| = |V2| = n ≥ 2 and δ (G) ≥ ⌈n/2⌉ + 1, then, for any bipartite graph H = (U1, U2; F) with |U1| ≤ n, |U2| ≤ n and Δ (H) ≤ 2, G contains a subgraph isomorphic to H. © 1999 John Wiley & Sons, Inc. J Graph Theory 31: 101–106, 1999  相似文献   

3.
We show that for any graph G, the chromatic number χ(G) ≤ Δ2(G) + 1, where Δ2(G) is the largest degree that a vertex ν can have subject to the condition that ν is adjacent to a vertex whose degree is at least as big as its own. Moreover, we show that the upper bound is best possible in the the following sense: If Δ2(G) ≥ 3, then to determine whether χ(G) ≤ Δ2(G) is an NP‐complete problem. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 117–120, 2001  相似文献   

4.
A k-decomposition (G1,…,Gk) of a graph G is a partition of its edge set to form k spanning subgraphs G1,…,Gk. The classical theorem of Nordhaus and Gaddum bounds χ(G1) + χ(G2) and χ(G1)χ(G2) over all 2-decompositions of Kn. For a graph parameter p, let p(k;G) denote the maximum of over all k-decompositions of the graph G. The clique number ω, chromatic number χ, list chromatic number χℓ, and Szekeres–Wilf number σ satisfy ω(2;Kn) = χ(2;Kn) = χℓ(2;Kn) = σ(2;Kn) = n + 1. We obtain lower and upper bounds for ω(k;Kn), χ(k;Kn), χℓ(k;Kn), and σ(k;Kn). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of χ(k;G) over all graphs embedded on a given surface. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

5.
Emil Popescu 《PAMM》2007,7(1):2160001-2160002
Let Gi, 1 ≤ in, be compact abelian groups and let Γi , 1 ≤ in, be countable dual groups. We consider G = G1G2 ⊕ … ⊕ Gn and Γ = Γ1 ⊕ Γ2 ⊕ … ⊕ Γn . For 1 ≤ jn, let aj be a negative definite function on Γj and a (γ) = . For φS (G), the set of all generalized trigonometrical polynomials on G, we define , where (γ) = aj (γj) (γ), 1 ≤ jn. Then is a Dirichlet form with the domain on L2 (G). (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
If by s k is denoted the number of independent sets of cardinality k in a graph G, then ${I(G;x)=s_{0}+s_{1}x+\cdots+s_{\alpha}x^{\alpha}}$ is the independence polynomial of G (Gutman and Harary in Utilitas Mathematica 24:97–106, 1983), where αα(G) is the size of a maximum independent set. The inequality |I (G; ?1)| ≤ 2 ν(G), where ν(G) is the cyclomatic number of G, is due to (Engström in Eur. J. Comb. 30:429–438, 2009) and (Levit and Mandrescu in Discret. Math. 311:1204–1206, 2011). For ν(G) ≤ 1 it means that ${I(G;-1)\in\{-2,-1,0,1,2\}.}$ In this paper we prove that if G is a unicyclic well-covered graph different from C 3, then ${I(G;-1)\in\{-1,0,1\},}$ while if G is a connected well-covered graph of girth ≥ 6, non-isomorphic to C 7 or K 2 (e.g., every well-covered tree ≠ K 2), then I (G; ?1) = 0. Further, we demonstrate that the bounds {?2 ν(G), 2 ν(G)} are sharp for I (G; ?1), and investigate other values of I (G; ?1) belonging to the interval [?2 ν(G), 2 ν(G)].  相似文献   

7.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

8.
We show that strong homology groups p(X; G) of a space X vanish if p is greater than the shape dimension sd X. For p=sd X, p(X; G) coincides with the Čech homology groups Ȟp(X; G). We also show that there exist 1-dimensional spaces, which do not admit 1-dimensional ANR-resolutions. Therefore, the vanishing of p(X; G) for p>dim X is a nontrivial fact.  相似文献   

9.
Let G(n, d) denote a connected regular bipartite graph on 2n vertices and of degree d. It is proved that any Cartesian product G(n, d) × G1(n1, d1) × G2(n2, d2) × ? × Gm(nm, dm), such that max {d1, d2,…, dm} ≤ dd1 + d2 + ? + dm, has a quadrilateral embedding, thereby establishing its genus, and thereby generalizing a result of White. It is also proved that if G is any connected bipartite graph of maximum degree D, if Qm is the m-cube graph, and if mD then G × Qm has a quadrilateral embedding.  相似文献   

10.
It is shown that if G is a graph of order n with minimum degree δ(G), then for any set of k specified vertices {v1,v2,…,vk} ? V(G), there is a 2‐factor of G with precisely k cycles {C1,C2,…,Ck} such that viV(Ci) for (1 ≤ ik) if or 3k + 1 ≤ n ≤ 4k, or 4kn ≤ 6k ? 3,δ(G) ≥ 3k ? 1 or n ≥ 6k ? 3, . Examples are described that indicate this result is sharp. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 188–198, 2003  相似文献   

11.
For an ordered set W = {w 1, w 2,..., w k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the k-vector r(v|W) = (d(v, w 1), d(v, w 2),... d(v, w k)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G containing a minimum number of vertices is a basis for G. The dimension dim(G) is the number of vertices in a basis for G. A resolving set W of G is connected if the subgraph 〈W〉 induced by W is a nontrivial connected subgraph of G. The minimum cardinality of a connected resolving set in a graph G is its connected resolving number cr(G). Thus 1 ≤ dim(G) ≤ cr(G) ≤ n?1 for every connected graph G of order n ≥ 3. The connected resolving numbers of some well-known graphs are determined. It is shown that if G is a connected graph of order n ≥ 3, then cr(G) = n?1 if and only if G = K n or G = K 1,n?1. It is also shown that for positive integers a, b with ab, there exists a connected graph G with dim(G) = a and cr(G) = b if and only if $\left( {a,b} \right) \notin \left\{ {\left( {1,k} \right):k = 1\;{\text{or}}\;k \geqslant 3} \right\}$ Several other realization results are present. The connected resolving numbers of the Cartesian products G × K 2 for connected graphs G are studied.  相似文献   

12.
Let G = (V, A) be a digraph with diameter D ≠ 1. For a given integer 2 ≤ tD, the t-distance connectivity κ(t) of G is the minimum cardinality of an xy separating set over all the pairs of vertices x, y which are at distance d(x, y) ≥ t. The t-distance edge connectivity λ(t) of G is defined similarly. The t-degree of G, δ(t), is the minimum among the out-degrees and in-degrees of all vertices with (out- or -in-) eccentricity at least t. A digraph is said to be maximally distance connected if κ(t) = δ(t) for all values of t. In this paper we give a construction of a digraph having D − 1 positive arbitrary integers c2 ≤ … ≤ cD, D > 3, as the values of its t-distance connectivities κ(2) = c2, …, κ(D) = cD. Besides, a digraph that shows the independence of the parameters κ(t), λ(t), and δ(t) is constructed. Also we derive some results on the distance connectivities of digraphs, as well as sufficient conditions for a digraph to be maximally distance connected. Similar results for (undirected) graphs are presented. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Let G = (V, E) be a connected graph. The hamiltonian index h(G) (Hamilton-connected index hc(G)) of G is the least nonnegative integer k for which the iterated line graph L k (G) is hamiltonian (Hamilton-connected). In this paper we show the following. (a) If |V(G)| ≥ k + 1 ≥ 4, then in G k , for any pair of distinct vertices {u, v}, there exists k internally disjoint (u, v)-paths that contains all vertices of G; (b) for a tree Th(T) ≤ hc(T) ≤ h(T) + 1, and for a unicyclic graph G,  h(G) ≤ hc(G) ≤ max{h(G) + 1, k′ + 1}, where k′ is the length of a longest path with all vertices on the cycle such that the two ends of it are of degree at least 3 and all internal vertices are of degree 2; (c) we also characterize the trees and unicyclic graphs G for which hc(G) = h(G) + 1.  相似文献   

14.
For a graph G=(V,E) with vertex-set V={1,2,…,n}, which is allowed to have parallel edges, and for a field F, let S(G;F) be the set of all F-valued symmetric n×n matrices A which represent G. The maximum corank of a graph G is the maximum possible corank over all AS(G;F). If (G1,G2) is a (?2)-separation, we give a formula which relates the maximum corank of G to the maximum corank of some small variations of G1 and G2.  相似文献   

15.
Associated to each graph G is its chromatic polynomial f(G, t) and we associate to f(G, t) the sequence α (G) of the norms of its coefficients. A stringent partial ordering is established for such sequences. The main result is that for any graph G with q edges we have α (Rq) ≤ α (G) ≤ α (Sq), where Rq and Sq are specified graphs with q edges. This translates into a clearer view of allowable values and patterns in the chromatic coefficients. © 1997 John Wiley & Sons, Inc. J Graph Theory 26: 123–128, 1997  相似文献   

16.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

17.
The average distance μ(G) of a graph G is the average among the distances between all pairs of vertices in G. For n ≥ 2, the average Steiner n-distance μn(G) of a connected graph G is the average Steiner distance over all sets of n vertices in G. It is shown that for a connected weighted graph G, μn(G) ≤ μk(G) + μn+1−k(G) where 2 ≤ kn − 1. The range for the average Steiner n-distance of a connected graph G in terms of n and |V(G)| is established. Moreover, for a tree T and integer k, 2 ≤ kn − 1, it is shown that μn(T) ≤ (n/kk(T) and the range for μn(T) in terms of n and |V(T)| is established. Two efficient algorithms for finding the average Steiner n-distance of a tree are outlined. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then χ′c(G) ≤ 11/3 provided that G does not contain H1 or H2 as a subgraph, where H1 and H2 are obtained by subdividing one edge of K (the graph with three parallel edges between two vertices) and K4, respectively. As χ′c(H1) = χ′c(H2) = 4, our result implies that there is no graph G with 11/3 < χ′c(G) < 4. It also implies that if G is a 2‐edge connected cubic graph, then χ′c(G) ≤ 11/3. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 325–335, 2005  相似文献   

19.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

20.
Jiakuan Lu  Wei Meng 《代数通讯》2013,41(5):1752-1756
For a finite group G, let v(G) denote the number of conjugacy classes of non-normal subgroups of G and vc(G) denote the number of conjugacy classes of non-normal noncyclic subgroups of G. In this paper, we show that every finite group G satisfying v(G) ≤2|π(G)| or vc(G) ≤ |π(G)| is solvable, and for a finite nonsolvable group G, v(G) = 2|π(G)| +1 if and only if G ? A 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号