首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis of thioacid-containing peptides. These peptides were readily converted to complex N-glycopeptides by using a fast and chemoselective one-pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site-selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.  相似文献   

2.
We present for the first time the synthesis of asymmetrically branched sequence-defined poly/oligo(amidoamines) (PAAs) using solid-phase synthesis with the capability of introducing diversity at the side chains. We introduce two new versatile (diethylenetriamine) building blocks for solid-phase synthesis bearing Fmoc/Boc and Fmoc/Alloc protecting groups expanding recently used Fmoc/Boc protecting group strategy for linear PAAs to an Fmoc/Alloc/Boc strategy. This allows for orthogonal on-resin cleavage of Fmoc and Alloc protecting groups during solid-phase synthesis of PAAs with backbones differing in chain length and sequence. With these structures we then demonstrate the potential for generating asymmetrical branching by automated multiple on-resin cleavage of Alloc protecting groups as well as the introduction of side chains varying in length and number. Such systems have high potential as nonviral vectors for gene delivery and will allow for more detailed studies on the correlation between the degree of branching of PAAs and their resulting biological properties.  相似文献   

3.
An efficient four-step synthetic strategy able to fully discriminate hydroxyphosphinyl and carboxylic groups of Fmoc-phosphinic building blocks and related analogues has been developed. The proposed method applies selective acidic removal of the phenacyl (Pac) group from the hydroxyphosphinyl functionality and protection by the 1-adamantyl (Ad) group. Reductive removal of the Pac group from the carboxylic functionality leads to Fmoc-protected phosphinic pseudodipeptidic units suitable for phosphinic peptide and library development using solid-phase peptide synthesis (SPPS).  相似文献   

4.
[reaction: see text] Total chemical synthesis of proteins by chemoselective ligation relies on C-terminal peptide thioesters as building blocks. Their preparation by standard Fmoc solid-phase peptide synthesis is made difficult by the lability of thioesters to aminolysis by the secondary amines used for removal of the Fmoc group. Here we present a novel backbone amide linker (BAL) strategy for their synthesis in which the thioester functionality is masked as a trithioortho ester throughout the synthesis.  相似文献   

5.
The development of phenyldithioethyloxycarbonyl (Phdec) and 2-pyridyldithioethyloxycarbonyl (Pydec) protecting groups, which are thiol-labile urethanes, is described. These new disulfide-based protecting groups were introduced onto the epsilon-amino group of L-lysine; the resulting amino acid derivatives were easily converted into N alpha-Fmoc building blocks suitable for both solid- and solution-phase peptide synthesis. Model dipeptide(Ardec)s were prepared by using classical peptide couplings followed by standard deprotection protocols. They were used to optimize the conditions for complete thiolytic removal of the Ardec groups both in aqueous and organic media. Phdec and Pydec were found to be cleaved within 15 to 30 min under mild reducing conditions: i) by treatment with dithiothreitol or beta-mercaptoethanol in Tris.HCl buffer (pH 8.5-9.0) for deprotection in water and ii) by treatment with beta-mercaptoethanol and 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) in N-methylpyrrolidinone for deprotection in an organic medium. Successful solid-phase synthesis of hexapeptides Ac-Lys-Asp-Glu-Val-Asp-Lys(Ardec)-NH2 has clearly demonstrated the full orthogonality of these new amino protecting groups with Fmoc and Boc protections. The utility of the Ardec orthogonal deprotection strategy for site-specific chemical modification of peptides bearing several amino groups was illustrated firstly by the preparation of a fluorogenic substrate for caspase-3 protease containing the cyanine dyes Cy 3.0 and Cy 5.0 as FRET donor/acceptor pair, and by solid-phase synthesis of an hexapeptide bearing a single biotin reporter group.  相似文献   

6.
The synthesis of a sulfonamide-based transition-state (TS) analogue of enzymatic phosphohistidine dephosphorylation as an amino acid building block is presented, together with the proof-of-concept of its incorporation into peptides. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The peptides are designed as inhibitors of phosphohistidine phosphatase and as a pull-down probe for identification of phosphohistidine phosphatases, respectively.  相似文献   

7.
A versatile solid-phase approach to sequence-defined polyamidoamines was developed. Four different Fmoc-polyamino acid building blocks were synthesized by selective protection of symmetrical oligoethylenimine precursors followed by introduction of a carboxylic acid handle using cyclic anhydrides and subsequent Fmoc-protection. The novel Fmoc-polyamino acids were used to construct polyamidoamines demonstrating complete compatibility to standard Fmoc reaction conditions. The straightforward synthesis of the building blocks and the high efficiency of the solid-phase coupling reactions allow the versatile synthesis of defined polycations.  相似文献   

8.
The solution-phase synthesis and resolution of new phosphinopeptidic building blocks containing a triple bond was realized in high yields and optical purities (units 3 a-d). The absolute configuration of the target compounds was unambiguously established by NMR studies. A post-assembly diversification strategy of these blocks was developed through 1,3-dipolar cycloaddition of a variety of in situ prepared nitrile oxides. This strategy led to the rapid and efficient diastereoselective preparation of a novel class of isoxazole-containing phosphinic peptides (peptides 5 a-i). Solid-phase version of this strategy was efficiently achieved on multipin solid technology, by developing a new protocol for the coupling of P-unprotected dipeptidic blocks with solid supported amino acids in a quantitative and diastereoselective manner. Optimization of dipolar cycloadditions onto pin-embodied phosphinic peptides allowed the convenient preparation of this new class of pseudopeptides. The crude phosphinic peptides (9 a-k) were obtained in high yields and purity as determined by RP-HPLC. Inhibition assays of some of these peptides revealed that they behave as very potent inhibitors of MMPs, outmatching previously reported phosphinic peptides, in terms of potency (K(i) in the range of few nM).  相似文献   

9.
A number of biologically relevant O4-phospho-L-tyrosine-containing peptides have been synthesized by either the global phosphorylation of the side-chain-unprotected L-tyrosine moiety in presynthesized resin-bound peptides or alternatively by the incorporation of suitably protected O4-phospho-L-tyrosine building blocks in the continuous-flow method of Fmoc solid-phase peptide synthesis. Different phosphate-protecting groups have been applied.  相似文献   

10.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

11.
以Fmoc-策略固相合成方法为基础,以亚磷酰胺为磷酸化试剂,分别以总体磷酸化法和单体磷酸化法合成了多种磷肽、修饰磷肽及其对应的非磷酸化多肽,并以乙腈/水/0.06%三氟乙酸为洗脱体系,用HPLC对磷肽和多肽进行分离.肽链的长度增加,总体法的磷酸化效率降低;这种基于Fmoc-策略的单体磷酸化法目前只适用于含酪氨酸磷肽的合成.  相似文献   

12.
The first straightforward building block based (non-interassembly) synthesis of peptides containing adenylylated serine and threonine residues is described. Key features include final global acidolytic protective group removal as well as full compatibility with standard Fmoc solid-phase peptide synthesis (SPPS). The described Thr-AMP SPPS-building block has been employed in the synthesis of the Thr-adenylylated sequence of human GTPase CDC42 (Ac-SEYVP-T(AMP)-VFDNYGC-NH(2)). Further, we demonstrate proof-of-concept for the synthesis of an Ser-adenylylated peptide (Ac-GSGA-S(AMP)-AGSGC-NH(2)) from the corresponding adenylylated serine building block.  相似文献   

13.
A synthetic strategy for the formation of resin-bound internal alpha-keto amide peptides suitable for protease inhibitor screening on solid support is presented. This general approach is based on the incorporation of alpha-keto amide building blocks during solid-phase peptide synthesis (SPPS). Such dipeptidyl building blocks were accessible using the acylcyanophosphorane methodology. The acid-labile alpha-keto carbonyl functionality was protected as a 1,3-dithiolane derivative. This protective group is fully compatible with standard SPPS reaction conditions and can be efficiently removed with N-bromosuccinimide in 10% aqueous acetone. The alpha-keto amide peptides were assembled on SPOCC-1500 resin and were characterized with high-resolution magic angle spinning (HR-MAS) NMR on bead. The methodology was evaluated and tested with a variety of building blocks containing natural and nonnatural amino acid moieties.  相似文献   

14.
Bejugam M  Flitsch SL 《Organic letters》2004,6(22):4001-4004
[reaction: see text] Chemical glycopeptide synthesis requires access to gram quantities of glycosylated amino acid building blocks. Hence, the efficiency of synthesis of such building blocks is of great importance. Here, we report a fast and highly efficient synthetic route to Fmoc-protected asparaginyl glycosides from unprotected sugars in three steps with high yields. The glycosylated amino acids were successfully incorporated into target glycopeptides 7 and 8 by standard Fmoc solid-phase peptide synthesis.  相似文献   

15.
[structure: see text] A solid-phase fluorenylmethyloxycarbonyl (Fmoc)-based synthesis strategy is described for "mixed" aza-beta3-peptides as well as a convenient general approach for their required building blocks, the aza-beta3-amino acid residues (aza-beta3-aa). These monomers allow the synthesis of relatively large quantities of pure mixed aza-beta3-peptides. The required Fmoc-substituted aza-beta3-amino acids are accessible by convenient synthesis, and a number of monomers including those containing side chains with functional groups have been synthesized. The method was applied toward the solid-phase synthesis of aza-beta3-peptide mimetics of a biologically active histone H4 sequence.  相似文献   

16.
N(alpha)-Methylamino acid containing peptides exhibit interesting therapeutic profiles and are increasingly recognized as potentially useful therapeutics. Unfortunately, their synthesis is hampered by the high price and unavaibility of many N(alpha)-methylamino acids. An efficient and practical preparation of N(alpha)-methyl-N(alpha)-(o-nitrobenzenesulfonyl)-alpha-amino acids without extensive purification is described. The procedure is based on the well-known N-alkylation of N(alpha)-arylsulfonylamino esters which was improved by using dimethyl sulfate and DBU as base. Ester cleavage is efficiently achieved by using an S(N)2-type saponification with lithium iodide, avoiding racemization observed with lithium hydroxide hydrolysis. Compatibility of the synthesized N(alpha)-methylamino acids with Fmoc solid-phase peptide synthesis is demonstrated by using normal coupling conditions to efficiently prepare N-methyl dipeptides. The described procedure allows the preparation of N(alpha)-methylamino acids in a very short period of time and a rapid synthesis of N-methyl peptides using Fmoc solid-phase peptide synthesis.  相似文献   

17.
The general concept of tethered combinatorial libraries of compounds in which two pharmacophores are found is described. In particular, an improved method for the solid-phase synthesis of bicyclic guanidines from reduced N-acylated dipeptides, and its use in the synthesis of urea-linked bicyclic guanidines, is described. The exhaustive reduction of glutamine-containing resin-bound N-acylated dipeptides, using borane-THF, generated compounds containing three secondary amines and one primary amine. Following selective trityl protection of the primary amine, treatment of the three secondary amines with thiocarbonyldiimidazole (CSIm2) and mercuric acetate (Hg(OAc)2) generated the resin-bound bicyclic guanidines. Following trityl deprotection, an Fmoc-amino acid was coupled. Upon removal of the Fmoc protecting group, the resulting primary amine was treated with hexyl isocyanate to generate the urea-linked bicyclic guanidines. The desired products were cleaved from the resin using hydrogen fluoride. The selection of building blocks and characterization of controls for the synthesis of a combinatorial library is discussed.  相似文献   

18.
Nα-(4,4-Dimethyl-2,6-dioxocyclohexylidenemethylene) (Dmc) protected l-serine, l-threonine and l-homoserine have been prepared as tert-butyl esters in excellent yields. These hydrogenolysis stable acceptors underwent efficient α-O-glycosylation with an l-fucopyranosyl bromide donor and also allowed convenient protecting group manipulations to ultimately deliver novel glycoamino acid building blocks suitable for Fmoc based solid-phase glycopeptide synthesis.  相似文献   

19.
Jin Seok Choi 《Tetrahedron》2005,61(9):2493-2503
New deprotection conditions that provide a complete orthogonality between Tsc and Fmoc amino-protecting groups are described. The potential of these orthogonal deprotection conditions was then demonstrated by the efficient solid-phase synthesis of branched peptides 20 and 21 using doubly protected amino acids such as Tsc-Lys(Fmoc)-OH 4c and Fmoc-Lys(Tsc)-OH 4d.  相似文献   

20.
Lipid-modified proteins play decisive roles in important biological processes such as signal transduction, organization of the cytoskeleton, and vesicular transport. Lipidated peptides embodying the characteristic partial structures of their parent lipidated proteins and semisynthetic proteins synthesized from such peptides are valuable tools for the study of these biological phenomena. We have developed an efficient synthesis strategy that allows for the synthesis of long multiply lipidated peptides embodying various side chain functional groups. The strategy was successfully applied in the synthesis of the N-terminal undetrigintapeptide of endothelial NO-synthase and related lipopeptides. Key elements of the synthesis strategy are the combined use of the enzyme-labile para-phenylacetoxybenzyloxycarbonyl (PhAcOZ) urethane as N-terminal blocking group, the Pd0-sensitive allyl ester as C-terminal protecting function and acid-labile side chain protecting groups for solution-phase synthesis of labile S-palmitoylated building blocks under the mildest conditions with solid-phase techniques and solution-phase fragment condensations. The successful synthesis of the triply lipidated 29-mer eNOS peptide convincingly demonstrates the full capacity of the protecting group methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号