首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The compatibility of the pure power law infrared solution of QCD and lattice data for the gluon and ghost propagators in Landau gauge is discussed. For the gluon propagator, the lattice data are well described by a pure power law with an infrared exponent κ∼0.53, in the Dyson–Schwinger notation. κ is measured using a technique that suppresses finite volume effects. This value is consistent with a vanishing zero momentum gluon propagator, in agreement with the Gribov–Zwanziger confinement scenario. For the ghost propagator, the lattice data seem not to follow a pure power law, at least for the range of momenta accessed in our simulation.  相似文献   

2.
In Landau gauge QCD the Kugo-Ojima confinement criterion and its relations to the infrared behaviour of the gluon and ghost propagators are reviewed. It is demonstrated that the realization of this confinement criterion (which is closely related to the Gribov-Zwanziger horizon condition) results from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement, also quantitatively, with corresponding lattice data obtained recently. The resulting running coupling approaches a fixed point in the infrared, (0) = 8.915/Nc. Solutions for the coupled system of Dyson-Schwinger equations for the quark, gluon and ghost propagators are presented. Dynamical generation of quark masses and thus spontaneous breaking of chiral symmetry takes place. In the quenched approximation the quark propagator functions agree well with those of corresponding lattice calculations. For a small number of light flavours the quark, gluon and ghost propagators deviate only slightly from the ones in quenched approximation. While the positivity violation of the gluon spectral function is manifest in the gluon propagator, there are no clear indications of analogous positivity violations for quarks so far.  相似文献   

3.
We consider the constraints of the Slavnov-Taylor identity of the IR behaviour of gluon and ghost propagators and their compatibility with solutions of the ghost Dyson-Schwinger equation and with the lattice picture.  相似文献   

4.
We investigate finite volume effects in the propagators of Landau gauge Yang-Mills theory using Dyson-Schwinger equations on a 4-dimensional torus. In particular, we demonstrate explicitly how the solutions for the gluon and the ghost propagator tend towards their respective infinite volume forms in the corresponding limit. This solves an important open problem of previous studies where the infinite volume limit led to an apparent mismatch, especially of the infrared behaviour, between torus extrapolations and the existing infinite volume solutions obtained in 4-dimensional Euclidean space-time. However, the correct infinite volume limit is approached rather slowly. The typical scales necessary to see the onset of the leading infrared behaviour emerging already imply volumes of at least 10-15 fm in lengths. To reliably extract the infrared exponents of the infinite volume solutions requires even much larger ones. While the volumes in the Monte-Carlo simulations available at present are far too small to facilitate that, we obtain a good qualitative agreement of our torus solutions with recent lattice data in comparable volumes.  相似文献   

5.
Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory.  相似文献   

6.
We rewrite the Zwanziger horizon condition in terms of the Kugo–Ojima parameter for color confinement. This enables one to explain which value of the Kugo–Ojima parameter is allowed if the horizon condition is imposed. Although all the calculations are performed in the limit of vanishing Gribov parameter for simplicity, the obtained value is consistent with the result of numerical simulations. Consequently, the ghost propagator behaves like free and the gluon propagator is non-vanishing at low momenta, in harmony with recent lattice results and decoupling solution of the Schwinger–Dyson equation. The Kugo–Ojima criterion is realized only when the restriction is removed.  相似文献   

7.
We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang–Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity.  相似文献   

8.
The coupled Dyson-Schwinger equations for the gluon and ghost propagators are investigated in the Landau gauge using a two-loop improved truncation that preserves the multiplicative renormalizability of the propagators. In this truncation all diagrams contribute to the leading-order infrared analysis. The infrared contributions of the nonperturbative two-loop diagrams to the gluon vacuum polarization are computed analytically, and this reveals that infrared power-behaved propagator solutions only exist when the squint-diagram contribution is taken into account. For small momenta the gluon and ghost dressing functions behave like (p 2)2 and (p 2), respectively, and the running coupling exhibits a fixed point. The values of the infrared exponent and fixed point depend on the precise details of the truncation. The coupled ghost-gluon system is solved numerically for all momenta, and the solutions have infrared behaviors consistent with the predictions of the infrared analysis. For truncation parameters chosen such that = 0.5, the two-loop improved truncation is able to produce solutions for the propagators and running coupling which are in very good agreement with recent lattice simulations.Received March 17, 2003; accepted May 9, 2003 Published online September 24, 2003  相似文献   

9.
We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta $q^{2}\ll\varLambda_{\mathrm{QCD}}^{2}$ . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2<1 are well parameterized by a transverse gluon mass 1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010).  相似文献   

10.
The dynamically generated effective gluon mass is known to depend non-trivially on the momentum, decreasing sufficiently fast in the deep ultraviolet, in order for the renormalizability of QCD to be preserved. General arguments based on the analogy with the constituent quark masses, as well as explicit calculations using the operator-product expansion, suggest that the gluon mass falls off as the inverse square of the momentum, relating it to the gauge-invariant gluon condensate of dimension four. In this article we demonstrate that the power law running of the effective gluon mass is indeed dynamically realized at the level of the non-perturbative Schwinger-Dyson equation. We study a gauge-invariant non-linear integral equation involving the gluon self-energy, and establish the conditions necessary for the existence of infrared finite solutions, described in terms of a momentum-dependent gluon mass. Assuming a simplified form for the gluon propagator, we derive a secondary integral equation that controls the running of the mass in the deep ultraviolet. Depending on the values chosen for certain parameters entering into the Ansatz for the fully dressed three-gluon vertex, this latter equation yields either logarithmic solutions, familiar from previous linear studies, or a new type of solutions, displaying power law running. In addition, it furnishes a non-trivial integral constraint, which restricts significantly (but does not determine fully) the running of the mass in the intermediate and infrared regimes. The numerical analysis presented is in complete agreement with the analytic results obtained, showing clearly the appearance of the two types of momentum dependence, well-separated in the relevant space of parameters. Several technical improvements, various open issues, and possible future directions, are briefly discussed.  相似文献   

11.
We present results for the gluon and ghost propagators in SU (N) Yang-Mills theory on a four-torus at zero and non-zero temperatures from a truncated set of Dyson-Schwinger equations. When compared to continuum solutions at zero temperature sizeable modifications due to the finite volume of the manifold, especially in the infrared, are found. Effects due to non-vanishing temperatures T, on the other hand, are minute for T < 250 MeV.  相似文献   

12.
We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss’ law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss’ law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schrödinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case.  相似文献   

13.
The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running-coupling approaches a fix point in the infrared, . Two different fits for the scale dependence of the running coupling are given and discussed.Received: 30 September 2002, Published online: 22 October 2003PACS: 12.38.Aw General properties of QCD (dynamics, confinement, etc.) - 14.70.Dj Gluons - 12.38.Lg Other nonperturbative calculations - 11.15.Tk Other nonperturbative techniques - 02.30.Rz Integral equations  相似文献   

14.
Dynamical chiral-symmetry breaking (DCSB) in QCD is investigated in the Schwinger-Dyson (SD) formalism based on lattice QCD data. From the quenched lattice data for the quark propagator in the Landau gauge, we extract the SD integral kernel function, the product of the quark-gluon vertex and the polarization factor in the gluon propagator, in an Ansatz-independent manner. We find that the SD kernel function exhibits the characteristic behavior of nonperturbative physics, such as infrared vanishing and strong enhancement at the intermediate-energy region around p 0.6GeV. The infrared and intermediate energy region (0.4GeV < p < 1.5GeV) is found to be most relevant for DCSB from analysis on the relation between the SD kernel and the quark mass function. We apply the lattice-QCD-based SD equation to thermal QCD, and calculate the quark mass function at the finite temperature. Spontaneously broken chiral symmetry is found to be restored at high temperature above 110 MeV.  相似文献   

15.
We demonstrate that the powerlike nonperturbative behavior of gluon and ghost propagators in the infrared limit of Yang-Mills theories can provide at finite temperatures T a negative T4 contribution to the pressure and energy density. The existence of a mass gap then implies new relations between the infrared critical exponents of gluon and ghost propagators.  相似文献   

16.
在胶子和鬼传播子所满足的耦合的Dyson-Schwinger方程中, 采用裸胶子-鬼顶点, 利用两种重整化方案: 解析延拓方法和减除方法, 得到了胶子和鬼传播子的红外行为. 计算表明两种重整化方案在红外区对胶子和鬼传播子得到一致的结果.  相似文献   

17.
We study a gauge-invariant order parameter for deconfinement and the chiral condensate in SU(2) and SU(3) Yang–Mills theory in the vicinity of the deconfinement phase transition using the Landau gauge quark and gluon propagators. We determine the gluon propagator from lattice calculations and the quark propagator from its Dyson–Schwinger equation, using the gluon propagator as input. The critical temperature and a deconfinement order parameter are extracted from the gluon propagator and from the dependency of the quark propagator on the temporal boundary conditions. The chiral transition is determined using the quark condensate as order parameter. We investigate whether and how a difference in the chiral and deconfinement transition between SU(2) and SU(3) is manifest.  相似文献   

18.
The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-Dyson equation with special structure and gauge properties, that can be deduced from the correspondence with the background field method. Most importantly the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting integral equation, subject to a properly regularized constraint, is solved numerically, and the main features of the solutions are briefly discussed.  相似文献   

19.
The results of Coulomb gauge and Landau gauge lattice QCD simulation do not agree completely with continuum theory. There are indications that the ghost propagator in the infrared region has strong fluctuation whose modulus is compatible with that of the color diagonal ghost propagator. After presenting lattice simulation of configurations produced with Kogut–Susskind fermion (MILC collaboration) and those with domain wall fermion (RBC/UKQCD collaboration), I investigate in triple gluon vertex and the ghost–gluon–ghost vertex how the square of the color antisymmetric ghost contributes. Then the effect of the vertex correction to the gluon propagator and the ghost propagator is investigated. Recent Dyson–Schwinger equation analysis suggests the ghost dressing function G(0) = finite and no infrared enhancement or α G  = 0. But the ghost propagator renormalized by the loop containing a product of color antisymmetric ghost is expected to behave as with with α G = 0.5, if the fixed point scenario is valid. I interpret the α G  = 0 solution should contain a vertex correction. The infrared exponent of our lattice Landau gauge gluon propagator of the RBC/UKQCD is α D  = − 0.5 and that of MILC is about − 0.7. A possible interpretation of the origin of the fluctuation is given.  相似文献   

20.
In a pure Yang-Mills theory, the Dyson equation for the gluon propagator is studied in the infrared regime, under the assumption that, as in QED, only those parts of the proper gluon vertex functions determined by the Ward identities are relevant. The calculations are all carried out in the axial gauge. With a number of simplifying assumptions the resulting integral equation for the gluon propagator can be solved in the IR regime. The solution displays a power singularity in the IR for the renormalized coupling constant g(q2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号