首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
 Mixed convection heat transfer in rectangular channels has been investigated experimentally under various operating conditions. The lower surface of the channel is subjected to a uniform heat flux, sidewalls are insulated and adiabatic, and the upper surface is exposed to the surrounding fluid. Experiments were conducted for Pr=0.7, aspect ratios AR=5 and 10, inclination angles 0° ≤ θ ≤ 30°, Reynolds numbers 50 ≤ Re ≤ 1000, and modified Grashof numbers Gr*=7.0 × 105 to 4.0 × 107. From the parametric study, local Nusselt number distributions were obtained and effects of channel inclination, surface heat flux and Reynolds number on the onset of instability were investigated. Results related to the buoyancy affected secondary flow and the onset of instability have been discussed. Some of the results obtained from the experimental measurements are also compared with the literature, and a good agreement was observed. The onset of instability was found to move upstream for increasing Grashof number and increasing aspect ratio. On the other hand, onset of instability was delayed for increasing Reynolds number and increasing inclination angle. Received on 19 March 2001 / Published online: 29 November 2001  相似文献   

2.
 Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200–6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2–1.8 and 1.5–3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly. Received on 5 April 2001  相似文献   

3.
An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien–Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. Received on 26 April 2000  相似文献   

4.
Heat transfer characteristics of a turbulent, dilute air-solids suspension flow in thermally developing/developed regions were experimentally studied, using a uniformly heated, horizontal 54.5 mm-ID pipe and 43-μm-diameter glass beads. The local heat transfer was measured at 27 locations from the inlet to 120-dia downstream of the heated section over a range of Reynolds numbers 3×104−1.2×105 and solids loading ratio 0–3, and the fully developed profiles of air velocity/temperature and particle mass flux were measured at a location 140-dia downstream of the heated section using specially designed probes, inserted into the suspension flow. The effects of the Reynolds number, solids loading ratio, and azimuthal/longitudinal locations on the heat transfer characteristics and their interactions are discussed through comparison of the present results with the data obtained by other investigators. Received on 14 October 1996  相似文献   

5.
The influence of oil on nucleate pool boiling heat transfer   总被引:1,自引:0,他引:1  
The influence of various oil contents in R134a is investigated for nucleate pool boiling on copper tubes either sandblasted or with enhanced heating surfaces (GEWA-B tube). Polyolester oils (POE) (Reniso Triton) with medium viscosity 55 cSt (SE55) and high viscosity 170 cSt (SE170) were used. Heat transfer coefficients were obtained for boiling temperatures between −28.6 and +20.1°C. The oil content varied from 0 to 5% mass fraction. For the sandblasted tube and the SE55 oil the heat transfer coefficients for the refrigerant/oil-mixture can be higher or lower than those for the pure refrigerant, depending on oil mass fraction, boiling temperature and heat flux. In some cases the highest heat transfer coefficients were obtained at a mass fraction of 3%. For the 170 cSt oil there is a clear decrease in heat transfer for all variations except for a heat flux 4,000 W/m2 and −10.1°C at 0.5% oil content. The heat transfer coefficients are compared to those in the literature for a smooth stainless steel tube and a platinum wire. For the enhanced tube and 55 cSt oil the heat transfer coefficients are clearly below those for pure refrigerant in all cases. The experimental results for the sandblasted tube are compared with the correlation by Jensen and Jackman. The calculated values are within +20 and −40% for the medium viscosity oil and between +50% and −40% for the high viscosity oil. A correlation for predicting oil-degradation effects on enhanced surfaces does not exist.  相似文献   

6.
Convective heat transfer characteristics of laminar pulsating pipe air flow   总被引:6,自引:0,他引:6  
 Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1–4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17–25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1–17 Hz and a reduction up to 20% for pulsation frequency range of 25–29.5 Hz for Reynolds numbers range of 780–1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750 < Re < 2000) and the dimensionless frequency (3<Ω<18) with about 10% rms. Received on 16 May 2000 / Published online: 29 November 2001  相似文献   

7.
The forced convection heat transfer with water vapor condensation is studied both theoretically and experimentally when wet flue gas passes downwards through a bank of horizontal tubes. Extraordinarily, discussions are concentrated on the effect of water vapor condensation on forced convection heat transfer. In the experiments, the air–steam mixture is used to simulate the flue gas of a natural gas fired boiler, and the vapor mass fraction ranges from 3.2 to 12.8%. By theoretical analysis, a new dimensionless number defined as augmentation factor is derived to account for the effect of condensation of relatively small amount of water vapor on convection heat transfer, and a consequent correlation is proposed based on the experimental data to describe the combined convection–condensation heat transfer. Good agreement can be found between the values of the Nusselt number obtained from the experiments and calculated by the correlation. The maximum deviation is within ±6%. The experimental results also shows that the convection–condensation heat transfer coefficient increases with Reynolds number and bulk vapor mass fraction, and is 1∼3.5 times that of the forced convection without condensation.  相似文献   

8.
 The convective heat transfer from fins to air has been evaluated using rotating annular fins subjected to an air flow parallel to the fins. The fin cooling is studied using infrared thermography. The thermal balance in a fin during its cooling process allows us to obtain the heat transfer coefficient from the temperature time evolution of the fin. Moreover, Particle Image Velocimetry allows us to obtain the flow field in the mid-plane between two fins. The influence of the fin spacing on the convective heat transfer is studied for various velocities of the superposed air flow and various fin rotational speeds. These tests were carried out for air flow Reynolds numbers (based on the shaft diameter and the velocity of the superposed air flow) between 2550 and 18200 and rotational Reynolds numbers (based on the shaft diameter and the peripheral speed) between 800 and 2.9 × 104, for different fin spacings. Received: 14 May 1999/Accepted: 8 October 1999  相似文献   

9.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

10.
The heat transfer characteristics of the condensation of ethanol–water binary vapor on vertical tubes with the pipe diameter of 10 mm were investigated experimentally. The results showed that, with the change of the vapor-to-surface temperature difference, the condensation heat transfer coefficients revealed nonlinear characteristics with peak values under a wide variety of operating conditions. With the increasing pressure or velocity of the vapor, the heat transfer coefficients increased subsequently. The effect of vapor pressure or velocity on heat transfer coefficients reduced with the increasing ethanol mass fraction. It was noteworthy that, under low ethanol mass fractions (0.5–2%), the heat transfer coefficients augmented significantly, were about 5–8 times greater than that of pure steam. The comparison for different test blocks indicated that the condensation heat transfer coefficients for different pipe diameters were about the same value under the same operating condition. Significant heat transfer enhancement by Marangoni condensation could be achieved for full range of pipe diameter used in industrial condensers.  相似文献   

11.
 The convective heat transfer from a cylinder to a humid air stream flowing normal to the cylinder was investigated experimentally at atmospheric pressure over a range of variables which is relevant to the use of hot‐wire anemometry: air temperatures between 30 °C and 70 °C and velocities between 12 and 37 m/s. For molar fractions of water vapour up to 0.27, the heat transfer increased with increasing humidity. The ratio of heat transfer rates in humid air and dry air is a unique function of the molar fraction of water vapour, independent of the air temperature and flow velocity. Received: 28 November 1996/Accepted: 5 July 1997  相似文献   

12.
Mixed convection from upward flow of hot air to a cooled vertical pipe   总被引:1,自引:0,他引:1  
An experimental study had been carried out to investigate the buoyancy-opposed mixed convection from an upward flow of hot air to a vertical pipe with a cooled surface. The investigation covered a wide range of flow regime, ranging from the “free convection significant” to the “forced convection significant” conditions. Reynolds number of the flow extended from 966 to 14780, whereas the Buoyancy parameter, Ω [=Grd/(Red)2], varied from 0.008 to 2.77. A steady stream of hot air at a moderate pressure and a Prandtl number of 0.707 was arranged to flow upward through a vertical steel pipe, whose external wall was cooled uniformly by ambient air at 20°C. Test section of the vertical pipe was 1625 mm long with an internal diameter of 156 mm and an external diameter of 166 mm. Air temperature at inlet of the test section was varied from 40°C to 70°C. Both radial temperature and velocity profiles of the airflow were measured at inlet and exit of the test section respectively. Temperatures along the pipe wall were also measured. Non-dimensional expression for the prediction of the average heat transfer coefficient of the mixed convection from an upward flow of hot air to a vertical pipe with a cooled surface was developed from the experimental results. Convection heat transfer was found to impair when the flow is laminar and was enhanced for turbulent flow condition. Received on 20 July 1998  相似文献   

13.
Flow boiling heat transfer in a vertical spirally internally ribbed tube   总被引:3,自引:0,他引:3  
 Experiments of flow boiling heat transfer and two-phase flow frictional pressure drop in a spirally internally ribbed tube (φ22×5.5 mm) and a smooth tube (φ19×2 mm) were conducted, respectively, under the condition of 6×105 Pa (absolute atmosphere pressure). The available heated length of the test sections was 2500 mm. The mass fluxes were selected, respectively, at 410, 610 and 810 kg/m2 s. The maximum heat flux was controlled according to exit quality, which was no more than 0.3 in each test run. The experimental results in the spirally internally ribbed tube were compared with that in the smooth tube. It shows that flow boiling heat transfer coefficients in the spirally internally ribbed tube are 1.4–2 times that in the smooth tube, and the flow boiling heat transfer under the condition of smaller temperature differences can be achieved in the spirally internally ribbed tube. Also, the two-phase flow frictional pressure drop in the spirally internally ribbed tube increases a factor of 1.6–2 as compared with that in the smooth tube. The effects of mass flux and pressure on the flow boiling heat transfer were presented. The effect of diameters on flow boiling heat transfer in smooth tubes was analyzed. Based on the fits of the experimental data, correlations of flow boiling heat transfer coefficient and two-phase flow frictional factor were proposed, respectively. The mechanisms of enhanced flow boiling heat transfer in the spirally internally ribbed tube were analyzed. Received on 1 December 1999  相似文献   

14.
This investigation explores the mass/heat transfer from a wall-mounted block in a rectangular fully developed channel flow. The naphthalene sublimation scheme was used to measure the level of local mass transfer from the block’s surfaces. The heat transfer coefficient can be obtained by analogy between heat and mass transfer. The effects of the Reynolds number on the local mass transfer from the block’s surfaces have been widely discussed. Results showed that, owing to the flow complexity induced by vortices around the block, the block’s surfaces appeared four different spatial Sherwood number distributions, termed “Wave type”, “U type”, “Slant type”, and “Pit type”. A change in the Reynolds number significantly altered the spatial Sherwood number distributions on the block’s surfaces. Besides, four correlations between the Reynolds number and the surface-averaged Sherwood number were presented for the front, top, side, and rear surfaces of the block at a given block’s height, for the purpose of practical applications.  相似文献   

15.
An experimental investigations of heat transfer for a stationary isothermal circular cylinder exposed normal to an impinging round air-jet has been reported. The circumferential heat transfer distributions as well as axial Nusselt number is measured. The measurements are taken as a function of the Reynolds number ranging from 3.8 × 103 to 4 × 104, the cylinder separation distance to the nozzle diameter (z/d) varying from 7 to 30, and the nozzle to cylinder diameter ratio (d/D) changing from 0.06 to 0.14. The output results indicated that the axial and radial distributions of the local heat transfer peaked at the impingement point. The heat transfer rate increases as the values of z decreases, for the same d and Re. The drop-off of the Nusselt number with increasing axial distance or radial angle from the impingement point was more pronounced for smaller z and d. The peripheral and surface average Nusselt numbers were determined by integration. The experimental data was used to produce correlations for both average and stagnation point heat transfer. Received on 4 January 1999  相似文献   

16.
Nucleate pool boiling heat transfer coefficients were measured during pool boiling of the mixtures of Citric acid/water on a horizontal heated Cylinder. The experiment was done at atmospheric pressure and heat fluxes up to 113 kW m−2 and mass fraction range 0.1496–0.613 over all ranges of mass fraction, the heat transfer coefficients of the mixtures are markedly less than those in single component substances and, in particular, are dramatically deteriorated in the vicinity of both single component substances. An applicability of existing correlations to the present experimental data is discussed. As a result, it is difficult for any existing correlation to predict the true values of pool boiling heat transfer coefficients over all ranges of mass fraction in mixtures of citric acid/water. Available correlation results were not exactly adapted to experimental data and for the best estimation, a new modified model based on Stephan-Kroner has been achieved with reasonable accuracy. Also the status of bubble generation showed that nucleation site density is strictly functioning of heat flux.  相似文献   

17.
 Natural convection, radiation and conduction heat transfer in passive solar massive wall systems with fins attached to the heated surface and with glazing is experimentally studied. The system was 0.78 m high, 0.40 m wide and 0.10 m thick concrete wall with a glazing placed at 0.0265 m from the surface. It had 0.025 m long, 0.004 m thick horizontal fins made as an integral part of the massive wall and placed at 0.01 m intervals. A heat source was used to impose a constant heat flux which could be varied from about 200–800 W/m2. Temperatures at various points and heat flux by convection at the back were measured. Using various assumptions, the systems was also analyzed theoretically. The results show that about 40% of the heat flux imposed on the finned surface goes through the system and is dissipated at the back. Received on 7 September 2000  相似文献   

18.
This study deals with the behavior of shallow turbulent wakes generated on smooth and rough surfaces. The wake generator used is a flat plate placed normal to the flow. Experiments were conducted at flow depths of 40 and 80 mm. The boundary layer thickness in the approaching flow occupies 60–75% of the flow depth. The Reynolds number based on the plate width and approaching freestream velocity varies from 13.0 × 103 to 14.5 × 103. Velocity measurements were carried out in the near-wake region (1–10 plate widths) using a laser-Doppler anemometer. The mean velocity distributions at various axial stations collapse onto a single curve by a proper choice of the length and velocity scales. It is important to note that a sense of self-similarity is attained even in the near-wake region. Attempts were made to clarify the relative effects of the transverse shear and bed friction in shallow open channel wakes. Received: 11 February 1999/Accepted: 30 August 2000  相似文献   

19.
Measurement and visualization of impingement cooling in narrow channels   总被引:1,自引:0,他引:1  
Experimental measurement techniques such as naphthalene sublimation, liquid crystal thermography and real-time holographic interferometry are standard. Their application in narrow channels causes problems and is therefore limited. The channel width must not change too much because the naphthalene sublimation and the liquid crystal coating necessary for the thermography may cause non-negotiable variations. The interferometry fails in turbulent flow area. The diffraction along the channel edges is an additional difficulty. A comparison of the results obtained from the application of all three techniques, which has not been considered in earlier publications, is made here. The methods were used to measure and visualize the heat transfer characteristics of an array of 1.2 mm diameter impinging jets in an enclosed channel (≥2.2 mm) with single-sided flow-off at Reynolds numbers of about Re z  ≈ 20,000. Scale-up ratios as low as 2.4 have been used in order to maintain similarity as it has not been previously reported. The naphthalene technique provided a high spatially resolved measurement of the Sherwood number along a downstream line. The liquid crystal thermography technique provided 2D contours of the Nusselt number. The temperature distribution within dead water zones was visualized with holographic interferometry. The cross-flow effects caused a shift in the stagnation point and a monotone decrease in the Nusselt number in the downstream direction. Received: 21 April 2000/Accepted: 6 July 2000  相似文献   

20.
 Relation between the surface flow pattern and the local mass transfer characteristic on the free end surface of a finite circular cylinder mounted on a flat plate was investigated using the oil surface flow visualization and the naphthalene sublimation technique. The aspect ratio [the ratio of the cylinder length to the cylinder diameter (H/D)] was 1.25 and the Reynolds number based on the diameter was 1.48 × 105. Several kinds of critical points on the free-end surface were identified by the visualization and the mass transfer measurement around those critical points through the naphthalene sublimation technique was then performed to investigate the relation between the flow and mass transfer. The free-end surface flow was topologically characterized by the presence of a saddle point and two focal points in the fore-half portion of the surface and two nodes and a saddle point in the rear-half portion. It was found that the rate of mass transfer was largest in the vicinity of the nodes in the rear-half of the free-end surface. Received on 26 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号