首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Proteins can enhance the chemiluminescence (CL) intensity of the 1,10-phenanthroline–H2O2–cetyltrimethylammonium bromide (CTMAB)–Cu(II) system because unsaturated complexes of Cu(II) with protein have a much stronger catalytic effect on the CL reaction than does Cu(II). On this basis, a new flow injection analysis method for detection of some proteins was established. The method gives linear responses over two orders of magnitude and detection limits at the 0.02–0.05 μg ml−1level for bovine serum albumin, human serum albumin, γ-globulin, and egg albumin. The method was used for determination of proteins in human serum with satisfactory results.  相似文献   

2.
《Analytical letters》2012,45(8):1591-1601
ABSTRACT

A simple, sensitive and selective method is proposed for the determination of copper(II) by adsorption-differential pulse stripping method. This method is based on the selective accumulation of the complexes of Cu(II) with l-(2-pyridylazo)-2-Naphthol and then reduction of the complex on a HMDE. The reduction current of the complex is about 0.0V vs. Ag/AgCl reference electrode at p8543146=4.0. The influences of various experimental parameters on the current peak were completely studied. The calibration graph was linear up to 50.0 ng/ml for a deposition time of 60 sec. The relative standard deviation was 2.3% (n=5) for Cu(II) concentration of 10.0 ng/ml, with a limit of detection of 0.2 ng/ml. The influence of potentially interfering ions was completely studied. The method has been applied for the determination of Cu(II) in water samples.  相似文献   

3.
The chromophore, 3-(5-chlor-2-hydroxy-3-sulfophenylazo)-6-(2,4,6-tribromophenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid (CSTDD) was used to complex Cu(II) and Co(II) in aqueous solution at pH 9.43. A binuclear complex of Cu-CSTDD-Co was formed and showed a high selectivity for the determination of Co(II). The spectral correction technique was applied to characterize the complexes. The results showed the formation of complexes of Cu(CSTDD), Co(CSTDD)3 and Cu2(CSTDD)2Co. The quantitative analysis of Co(II) at ng/ml level was carried out by the light-absorption ratio variation approach (LARVA). The results showed that the technique is satisfactory to determine Co(II) at trace level in water samples with a detection limit of 2.3 ng/ml.  相似文献   

4.
H C Tsai  C W Whang 《Electrophoresis》1999,20(12):2533-2538
A capillary electrophoresis (CE)/indirect chemiluminescence (CL) detection method is described for monoamines, viz., serotonin (5-HT), dopamine (DA), epinephrine (EP), and norepinephrine (NE) and for catechol (CA). Optimal separation and detection were obtained with an electrophoretic buffer of 10 mM sodium borate (pH 9.5) containing 5 mM luminol and 25 mM H2O2, and a catalyst solution of 30 microM CuSO4 in 30 mM borate buffer (pH 10.0). Complete separation of 5-HT, DA, EP, NE and CA was achieved in less than 5 min. The Cu(II)-catalyzed luminol CL reaction was employed to provide the high and constant background. Since monoamines and catechol can form stable complexes with Cu(II), inverted analyte peaks due to decreased catalytic activity of Cu(II) can be detected. The degree of CL suppression is proportional to the analyte concentrations. Linearity (r> or =20.99) over two orders of magnitude was generally obtained. The concentration limits of detection (CLODs) for the monoamines and catechol studied were between 0.5 and 3.1 uM. The relative standard deviation (RSD) values on peak size and migration time were in the ranges 3.2-4.4% and 0.4-0.5%, respectively. The applicability of the method for the analysis of pharmaceutical and biological samples was examined.  相似文献   

5.
Bis(thiosemicarbazonato) complexes Cu(II)(Btsc) have attracted interest as promising metallodrugs and, in particular, as copper radiopharmaceuticals. Prototypes Cu(Atsm) and Cu(Gtsm) are membrane-permeable, but their metabolisms in cells are distinctly different: copper that is delivered by Cu(Gtsm) is trapped nonselectively in all cells, whereas copper that is delivered by Cu(Atsm) is retained selectively in hypoxic cells but is "washed out" readily in normal cells. We have studied copper-transfer reactions of these two complexes under various conditions, aiming to model their cellular chemistry. In Me2SO, both complexes exhibited reversible one-electron-reduction processes with Cu(Atsm) being more difficult to reduce than Cu(Gtsm) (E(1/2)'=-0.60 and -0.44 V, respectively, vs AgCl/Ag). Upon introduction of an aqueous buffer into Me2SO, the electrochemical reduction remained chemically reversible for Cu(Atsm) but became irreversible for Cu(Gtsm). However, the estimated difference in their reduction potentials did not change. Chromophoric ligand anions bicinchonate (Bca) and bathocuproine disulfonate (Bcs) were used as Cu(I) indicators to trace the destinations of copper in the reactions and to mimic cellular Cu(I)-binding components ("sinks"). While both BtscH2 ligands have high affinities for Cu(I) (KD in the picomolar range), they cannot compete with Cu(I) sinks such as the copper-binding proteins Atx1 and Ctr1c (or a mimic such as Bcs). In the presence of these proteins, reduction of Cu(II)(Btsc) leads to irreversible transfer of copper to the protein ligands. Endogenous reductants ascorbate and glutathione can reduce Cu(II)(Gtsm) in the presence of such protein ligands but cannot reduce Cu(II)(Atsm). These properties establish a strong correlation between the contrasting cellular retention properties of these complexes and their different reduction potentials. The endogenous reductants in normal cells appear to be able to reduce Cu(II)(Gtsm) but not Cu(II)(Atsm), allowing the latter to be washed out. The more reducing environment of hypoxic cells leads to reduction of Cu(II)(Atsm) and retention of its copper.  相似文献   

6.
This article presents rotating ring‐disc electrode investigations of (A = alanine, F = phenylalanine, G = glycine, L = leucine, W = tryptophan) W, GW, WGG, GWG, GGW, GWGG, and GGWA. In addition, the analyses of the copper complexes of the same peptides plus GF, FGG, GFG, FGG, GGFL, GGGG, AAAA, and GGGGGG have been carried out. The results suggest that an influential step in the reaction mechanism of the copper complexes of the tryptophan‐containing peptides (W‐peptides) is the alteration of the peptide structure after the one‐electron oxidation of tryptophan. This change in structure leads to a positive shift in redox potential for the Cu(III)/Cu(II) couple. The analytical implications for the electrochemical detection of W‐peptides as their copper complexes are applied for detection of W‐containing bioactive peptides. Application of the optimized detection conditions of peptides as their Cu(II) complexes are as follows: (1) If sensitivity is paramount, detect the copper complexes at a relatively high potential, around 0.7 V vs. Ag/AgCl. (2) If selectivity is paramount, use a dual electrode detector, oxidize at an upstream anode at 0.4 V, and detect at the downstream cathode at 0–0.1 V.  相似文献   

7.
The partial least squares modeling based on singular value decomposition was applied for the simultaneous spectrophotometric determination of Co(II), Ni(II) and Cu(II) as their ammonium 2-amino-1-cyclohexan-1-dithiocarbamate complexes. The latent variable calculation in this partial least squares modeling is not an iterative technique. The detection limits for Co(II), Ni(II) and Cu(II) were 0.072, 0.021 and 0.063 mug/ml, respectively. The application of the method was confirmed by analysis of these metals in sample alloys.  相似文献   

8.
Lin Y  Wu H  Wai CM  Smart NG 《Talanta》2000,52(4):695-701
A method for separation and detection of divalent transition metal beta-diketonates by adduct formation/supercritical fluid chromatography (SFC) with an open-tubular capillary column and a FID detector is described. The crystal structures of copper (Cu)-hexafluoro-acetylacetone (HFA) and Cu bis(2,2,6,6-tetramethyl-3,5-heptanedionato) (THD) complexes have been determined by X-ray crystallography. The SFC behavior of Cu beta-diketonates shows a strong correlation with the structure of the complexes. The hydrated cu beta-diketonate complexes usually exhibit strong intermolecular interactions or decomposition in SFC. Formation of adducts with a neutral donor, such as tributyl phosphine oxide (TBPO), can greatly improve the SFC behavior and detection sensitivity of Cu(II) and Mn(II) beta-diketonates. The stoichiometry and thermal stability of the adducts Cu(II) and Mn(II) beta-diketonates with TBPO in supercritical CO(2) have also been investigated. The implications of utilizing adduct formation for supercritical fluid extraction (SFE) of divalent transition metals and for on-line coupled SFE/SFC analysis of divalent transition metals are discussed.  相似文献   

9.
A synthesis of the new reagent 4-(2-quinolylmethyleneamino)-1-phenyl-2,3-dimethyl-5-pyrazolone (QPP) and of its complexes with Ni(II) and Cu(II) is described. The structure of the ligand itself and the nature of the bonding in complex molecules were determined by elemental analysis, IR, and mass spectrometry. The analysis of data showed that isolated crystal metal complexes are of the ML2 type. The composition and stability constants of the complexes in water/methanol solutions, (methanol) = 0.16, at constant temperature 25 ±1 °C and ionic strength of 0.5 M (KNO3) at different pH (4, 6, 8, and 10) have been determined spectrophotometrically. The results indicate that the metal complexes formed in the solution have a metal-to-ligand ratio 1:2. The reaction of QPP with Ni(II) and Cu(II) in solution was quantitatively studied. The lowest detection limit for the determination of Ni is 0.3 μg/ml while that for Cu is 0.05 μg/ml under the investigated experimental Conditions.  相似文献   

10.
A series of trinuclear Cu(II) complexes with the tris(tetradentate) triplesalen ligands H(6)talen, H(6)talen(tBu(2) ), and H(6)talen(NO(2) ), namely [(talen)Cu(II) (3)] (1), [(talen(tBu(2) ))Cu(II) (3)] (2), and [(talen(NO(2) ))Cu(II) (3)] (3), were synthesized and their molecular and electronic structures determined. These triplesalen ligands provide three salen-like coordination environments bridged in a meta-phenylene arrangement by a phloroglucinol backbone. The structure of [(talen)Cu(II) (3)] (1) was communicated recently. The structure of the tert-butyl derivative [(talen(tBu(2) ))Cu(II) (3)] (2) was established in three different solvates. The molecular structures of these trinuclear complexes show notable differences, the most important of which is the degree of ligand folding around the central Cu(II)-phenolate bonds. This folding is symmetric with regard to the central phloroglucinol backbone in two structures, where it gives rise to bowl-shaped overall geometries. For one solvate two trinuclear triplesalen complexes form a supramolecular disk-like arrangement, hosting two dichloromethane molecules like two pearls in an oyster. The FTIR spectra of these complexes indicate the higher effective nuclear charge of Cu(II) in comparison to the trinuclear Ni(II) complexes by the lower C--O and higher C=N stretching frequencies. The UV/Vis/NIR spectra of 1-3 reflect the stronger ligand folding in the tert-butyl complex 2 by an intense phenolate-to-Cu(II) LMCT. This absorption is absent in 1 and is obscured by the nitro chromophore in 3. The more planar molecular structures cause orthogonality of the Cu(II) d(x(2)-y(2) ) orbital and the phenolate O p(z) orbital, which leads to small LMCT dipole strengths. Whereas 1 and 3 exhibit only irreversible oxidations, 2 exhibits a reversible one-electron oxidation at +0.26 V, a reversible two-electron oxidation at +0.59 V, and a reversible one-electron oxidation at +0.81 V versus Fc(+)/Fc. The one-electron oxidized form 2(+) is strongly stabilized with respect to reference mononuclear salen-like Cu complexes. Chemical one-electron oxidation of 2 to 2(+) allows the determination of its UV/Vis/NIR spectrum, which indicates a ligand-centered oxidation that can be assigned to the central phloroglucinol unit by analogy with the trinuclear Ni triplesalen series. Delocalization of this oxidation over three Cu(II)-phenolate subunits causes the observed energetic stabilization of 2(+). Temperature-dependent magnetic susceptibility measurements reveal ferromagnetic couplings for all three trinuclear Cu(II) triplesalen complexes. The trend of the coupling constants can be rationalized by two opposing effects: 1) electron-withdrawing terminal substituents stabilize the central Cu(II)-phenolate bond, which results in a stronger coupling, and 2) ligand folding around the central Cu(II)-phenolate bond opens a bonding pathway between the magnetic Cu(II) d(x(2)-y(2) ) orbital and the phenolate O p(z) orbital, which results in a stronger coupling. Density functional calculations indicate that both spin-polarization and spin-delocalization are operative and that slight geometric variations alter their relative magnitudes.  相似文献   

11.
The square-wave voltammetric behaviour of cysteine and saccharin was studied at a static mercury drop electrode at pH 7.4 in the presence of Cu(II) ions. In the presence of excess Cu(II), cysteine exhibited three reduction peaks for Hg(SR)2 (−0.086 V), free Cu(II) (−0.190 V) and Cu(I)SR (−0.698 V), respectively. Saccharin produced a catalytic hydrogen peak at −1.762 V. In the presence of Cu(II), saccharin gave a new peak (−0.508 V), corresponding to the reduction of Cu(II)–saccharinate, which in the presence of cysteine formed a mixed ligand complex (−0.612 V), CuL2A2 (L=saccharin and A=cysteine). The peak potentials and currents of the obtained complexes were dependent on the ligand concentration and accumulation time. The stoichiometries and overall stability constants of these complexes were determined by Lingane's method (voltammetrically) and Job’s method (spectrophotometrically). The mixed ligand complex in the molar ratio 1:2:2 (log β=33.35) turned out to be very much stronger than the 1:1 Cu(I)SR (log β=21.64) and 1:2 Cu(II)–saccharinate (log β=16.68) complexes. Formation of a mixed ligand complex can be considered as a type of synergism.  相似文献   

12.
In this work, a new method has been proposed to simultaneously determine V(V), Co(II) and Cu(II) ions from aqueous solution by spectrophotometry after cloud point extraction using partial least squares regression (PLS). The metal ions in 10 ml of aqueous solution (containing 0.2 M sodium acetate buffer solution, pH 3.5) were formed complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP). Then, Triton X-114 (2 %, v/v) was added to the solution. By increasing the temperature of the solution up to 55 °C, a phase separation occurred. After centrifugation at 3,000 rpm for 10 min, the surfactant-rich phase was dissolved and diluted to 0.5 mL with ethanol. The metal ions were then determined using spectrophotometry. At these optimal extraction and operating conditions, linearity was obeyed in the range 7–300, 3–100 and 15–700 ng mL?1 of V(V), Co(II) and Cu(II), with the detection limit of 2.2, 1.0 and 4.5 ng mL?1, respectively. The relative predictive error for the simultaneous determination of 15 test samples of different concentrations of V(V), Co(II) and Cu(II) was 3.28, 3.64 and 4.04 %, respectively. The root mean square error of prediction for applying the PLS method to 15 synthetic samples in the linear ranges of these metal ions was 3.4, 1.6 and 18.1 ng mL?1. The interference effect of some anions and cations was also tested. The proposed method has been applied successfully to the simultaneous determination of V(V), Co(II) and Cu(II) ions in real matrix samples with the recoveries of 96.75–104.80 %.  相似文献   

13.
Ensafi AA  Khayamian T  Atabati M 《Talanta》2002,57(4):785-793
An adsorption differential pulse stripping method for the simultaneous determination of molybdenum and copper based on the formation of their complexes with cupferron (benzene, N-hydroxy-N-nitroso) is proposed. The optimum experimental conditions were obtained 0.010 mM cupferron, pH 3.0, accumulation potential of -0.15 V versus Ag/AgCl, accumulation time of 60 s, scan rate of 10 mV s(-1) and pulse height of 50 mV. Molybdenum and copper peak currents were observed at -0.16 and +0.02 V, respectively. A principal component artificial neural network (PC-ANN) was utilized for the analysis of the voltammogram data. A three layer back-propagation network was used with sigmoidal transfer function for the hidden and the output layers. The linear dynamic ranges were 5.0-60.0 and 0.1-20.0 ng ml(-1) for Cu(II) and Mo(VI), respectively. The detection limit was 0.06 ng ml(-1) for Mo(VI) and 0.20 ng ml(-1) for Cu(II). The capability of the method for the analysis of real samples was evaluated by the determination of molybdenum and copper in river water, tap water, and alloy.  相似文献   

14.
The new [2 + 2] Schiff-base macrocyclic ligand L2, containing pyridazine head units and pyridine pendant arms, was synthesised as [Ba(II)2L2(ClO4)4(OH2)] 1 from the barium(II) ion templated condensation reaction of 3,6-diformylpyridazine and N1-(2-aminoethyl)-N1-(methylene-2-pyridyl)-ethane-1,2-diamine. Subsequent transmetallation reactions of 1 with copper(II), iron(II) and manganese(II) perchlorates led to the formation of [Cu(II)2L2](ClO4)4.2MeCN 2, [Fe(II)2L2(MeCN)2](ClO4)4 3 and two manganese complexes, 4 and 5, with the same formula, [Mn(II)2L2(MeCN)(OH2)](ClO4)4, but slightly different crystal structures, respectively. Single-crystal X-ray structural analyses reveal the variety of structures which can be supported by L2 in order to meet the coordination environment preferences of the incorporated metal ions. The barium(II) ions in 1 have an irregular ten-coordinate geometry whereas the copper(II) ions in 2 have a square pyramidal geometry and the iron(II) ions in 3 have an octahedral geometry, while in 4 and 5 every manganese(II) ion is seven-coordinate and the environment can be best described as distorted pentagonal bipyramidal. In 1, 4 and 5 the pyridazine moieties bridge the metal centres [Ba(1)...Ba(2) 4.9557(3)A 1; Mn(1)...Mn(2) 4.520(1)A 4; Mn(1)[dot dot dot]Mn(2) 4.3707(8)A 5] but this is not observed in the copper(II) and iron(II) complexes, 2 and 3, in which the metal ions are well separated [Cu(1)...Cu(2) 5.9378(6)A 2; Fe(1)...Fe(2) 5.7407(12)A 3]. In the cyclic voltammogram of [Cu2(II)L2](ClO4)4.2MeCN 2 in MeCN vs. Ag/AgCl two separate reversible one-electron transfer steps are observed [E(1/2)=0.04 V, DeltaE= 0.12 V and E(1/2)= 0.20 V, DeltaE=0.12 V; K(c)=510; in this system E(1/2)(Fc+/Fc)=0.42 V and DeltaE(Fc+/Fc)=0.08 V]. The other complexes cannot be reversibly reduced/oxidised.  相似文献   

15.
Asensitive and selective method employing chemiluminescence(CL) coupled with flow injection(FI) is reported for nalbuphine hydrochloride(NAL) assay in pharmaceutical formulations. The enhancement effect of NAL on the CL reaction between tris(2,2'-bipyridyl)ruthenium(II) chloride-diperiodatocuprate(III) {Ru[(bpy)3]2+-Cu(III) complex} in acidic medium is used as analytical measurement. The optimal conditions of the CL reaction were sulfuric acid 1.0×10-3 mol/L, Ru[(bpy)3]2+ 7.5×10-5 mol/L, Cu(III)/Ag(III) complexes 4.0×10-4/5.0×10-4 mol/L, sample loop volume of 120 μL and flow rate of 2.5 mL/min. The sensitivities of the method in terms of detection(S/N=3) and quantification(S/N=10) limits are 5×10-4 and 0.001 ppm(1 ppm=1 mg/L), respectively. The linear response of the instrument in the form of CL intensity with respect to NAL concentration is over the range 0.001-15.0 ppm(R2=0.9999) with relative standard deviation from 0.8% to 3.2% and injection throughput of 120 injection/h. The applications of the method include the quantitative analysis of NAL in pharmaceutical injection samples. Variations and the average results of the proposed method are not signi-ficantly different from the results of a reported method by applying F- and paired student t-test. The most likely CL reaction mechanism is written in accordance with spectrophotometric and CL studies.  相似文献   

16.
The structures of three new Cu(II) complexes with pyridine carboxamide ligands (Me2bpb, 6-Me2-Mebpb, and 6-Me2-Me2bpb) have been determined. 6-Methyl-substituted pyridyl bpb ligands produced dimeric compounds with Cu(II) ions, and weak interactions between dimers can make even polymeric compounds, while bpb ligands without 6-methyl substitution produced monomeric Cu(II) complexes. The large distortion effects of 6-methyl-substitution are shown in Cu(II) complexes with 6-methyl-substituted pyridyl bpb ligands. This result suggests that the steric effect of 6-methyl-substitution plays important role for distortion of the structure, and 6-methyl-substitution can also influence to make polymeric compounds with interactions between Cu(II) ions and neighbor carbonyl oxygen atoms. In addition, the voltammetric behaviors of the Cu complexes were examined and classified into two groups, with/without 6-methyl group. The complexes without 6-methyl group show reversible redox waves at −1.6 V, and the complexes with 6-methyl group do irreversible redox ones at −1.3 V, indicating that the presence of the methyl group of 6-position of the complex makes the reduction of the complexes easier.  相似文献   

17.
The use of 2-(6-methyl-2-benzothiazolylazo)-5-diethylaminophenolas a precolumn derivatizing reagent in the reversed-phase high performance liquid Chromatographic separation and determination of Ru(III), Rh(III), Os(IV), Ir(IV), Pt(II), Co(II), Ni(II) and Cu(II) is reported. When the mobile phase consists of methanol-water (76/24% v/v) and 20 mmol/l (pH 5.0) acetate buffer, the eight complexes can be separated within 35 min on a C8 column. The detection limits are Ru 7.0, Rh 5.1, Os 1.5, Ir 7.6, Pt 3.7, Co 0.62, Ni 0.14 and Cu 1.2 ng/ml, respectively, at a signal-to-noise ratio of 3. RSDs were typically Ca. 1%.  相似文献   

18.
Ultrasensitive methods are described for the detection and determination of cyanide-containing organic compounds and of various metal ions. The methods are based either on the hydrolysis of the organic compounds to give cyanide ion, which then catalyzes the reduction of o-dinitrobenzene via formation of the cyanohydrin anion of p-nitrobenzaldehyde, or on the inhibition of this catalytic reaction by silver-(I), mercury(II), copper(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) which form cyanide complexes. By these methods, tetracyanoethylene, p-chlorobenzylidine malononitrile, or benzoyl cyanide (0.1–10 μg/ml) may be determined with a deviation of about 2%, and Ag(i). Hg(II) (0.02–0.2 μg/ml), Cu(II) (0.003–0.030 μg/ml), Co(II) (0.06–0.40 μg/ml) and Ni(II), Zn(II) and Cd(II) (1–10 μg/ml) can be determined with a deviation of about 3%.  相似文献   

19.
《Analytical letters》2012,45(9):1625-1641
Abstract

The solvent extraction studies of Pd(II), V(V), Co(III), Cu(II), Ni(II) and Fe(II)-PAR [4 - (2-pyridyl azo)-resorcinol] complexes with dicyclohexyl-18-crown-6 have been investigated in 1,2-dichloroethane as a solvent. It was observed that the complexes of Pd(II), V(V), Co(III), Cu(II), Ni(II) and Fe(II)-PAR were extracted into organic phase. In order to investigate the effect of enthalpy and entropy in the extraction of metal-PAR complexes, an attempt has been made to explore the temperature effect. In the extraction studies, it was observed that the entropy effect is one of the major factors for the selective extraction. The shape of the complexes may be one of the causes for the extractability of metal-PAR complexes with potassium dicyclohexyl-18-crown-6. The planar palladium-PAR-SCN? complex was easily extracted into organic phase in comparison with other complexes.  相似文献   

20.
The synthesis, solution and solid state structural characterization, photophysical and electrochemical properties of two redox forms of an electrochromic copper-bis(4,4′-dimethyl-6,6′-diphenyl-2,2′-bipyridine) complex, [Cu(3)2]n (n=+1, +2), are presented. Both complexes were characterized in the solid state by X-ray diffraction methods on single-crystals showing that both forms exist in a pseudo-tetrahedral coordination, and a comparison with other structures was made. Like most copper(I) complexes, the red [Cu(3)2]+ complex shows a rather weak emission (Φem=2.7×10−4, dichloromethane). The lifetime of the emitting MLCT state is 34±1 ns, as observed with time resolved emission, and transient absorption (in deoxygenated dichloromethane). Typical emission and transient absorption spectra are presented. The transient absorption spectra indicate that the MLCT state absorbs stronger than the ground state, which is relatively uncommon for metal bipyridine complexes, i.e. no ground state bleaching is observed. The green [(3)2Cu]2+ complex does not show any observable emission or transient absorption, which is a common feature for Cu(II) complexes of this type. The electronic absorption spectra of the chemically and electrochemically produced copper(I/II) complexes are identical. The repeated electrochemical conversion of the Cu(I) center into Cu(II) and vice versa does not cause any decomposition. This is consistent with a fully reversible Cu(I)/Cu(II) redox couple in the corresponding cyclic voltammogram, (E1/2 (Cu(I)/Cu(II))=+0.68 V vs. SCE=+0.23 V vs. Fc/Fc+). These observations indicate that no large structural reorganization occurs upon electrochemical timescales (sub second), and that the different ways of generating the complexes does not effect their final structure, apart from the small differences observed in the X-ray structures of both forms. These characteristics make these complexes rather well suited for their incorporation into an electrochromic display configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号