首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The etch rates, surface morphology and sidewall profiles of features formed in GaN/InGaN/AlGaN multiple quantum well light-emitting diodes by Cl2-based dry etching are reported. The chlorine provides an enhancement in etch rate of over a factor of 40 relative to the physical etching provided by Ar and the etching is reactant-limited until chlorine gas flow rates of at least 50 standard cubic centimeters per minute. Mesa sidewall profile angle control is possible using a combination of Cl2/Ar plasma chemistry and SiO2 mask. N-face GaN is found to etch faster than Ga-face surfaces under the same conditions. Patterning of the sapphire substrate for improved light extraction is also possible using the same plasma chemistry.  相似文献   

2.
We model the plasma etching of trenches by Langmuir kinetics for neutral molecules and bombarding ions. The parallel combination of an isotropic etch rate for the neutrals and an anisotropic etch rate for the ions gives an effective etch rate. The ion etch rate is proportional to the normal surface component of the ion energy flux. An approximate analytical expression for the composite etch rate offers a new approach to the computation of etch profiles for these mixed systems. Etch profiles are displayed for three cases: the nearly ion flux-limited regime, an intermediate case, and the nearly neutral-flux limited regime for the trench bottom. The numerical calculation of the etch profiles follows from the integration of three characteristic strip equations which are nonlinear first-order ordinary differential equations (ODE's)  相似文献   

3.
We have compared low-pressure oxygen RF plasmas and the etching of photoresist in a reactive sputter etch reactor and in a magnetron etch reactor using Langmuir probe, optical emission actinometry, and mass spectrometry measurements. The Langmuir probe data allow the determination of the plasma ion density and electron temperature, and thus the ion flux onto the substrate. The optical data yield information on the presence of O atoms and O2+ ions. Stable reactant and product species are monitored with a mass spectrometer. The main difference between the two reactors is that in magnetron sputter etching (MSE), the ion flux to the substrate is about an order of magnitude higher, under comparable plasma conditions, than in reactive sputter etching (RSE). This accounts for the higher etch rate in MSE. However, the etch yield per ion is higher in RSE because of the higher ion energy. Etch rates correlate neither with the ion flux to the substrate nor with the density of O atoms in the plasma, but change in parallel with the consumption of reactant gas. We conclude that in etching a polymer in a low-pressure oxygen plasma, the main neutral reactant species are O2 molecules, and an important role of the ions is to remove reaction products from the substrate surface.  相似文献   

4.
The laser etching using a surface adsorbed layer (LESAL) is a new method for precise etching of transparent materials with pulsed UV-laser beams. The influence of the processing parameters to the etch rate and the surface roughness for etching of fused silica, quartz, sapphire, and magnesium fluoride (MgF2) is investigated. Low etch rates of 1 nm/pulse and low roughness of about 1 nm rms were found for fused silica and quartz. This is an indication that different structural modifications of the material do not affect the etching significantly as long as the physical properties are not changed. MgF2 and sapphire feature a principal different etch behavior with a higher etch rate and a higher roughness. Both incubation effects as well as the temperature dependence of the etch rate can be interpreted by the formation of a modified near surface region due to the laser irradiation. At repetition rates up to 100 Hz, no changes of the etch rate have been observed at moderate laser fluences.  相似文献   

5.
Laser-induced backside wet etching of fused silica using a solution of pyrene dissolved in halogenated and non-halogenated solvents is presented. A significant influence of the solvent used on the etch rate and the etched surface appearance was ascertained. The etching of uniform and smooth surfaces with rates of ∼0.1 nm/pulse for laser fluences below 500 mJ/cm2 is observed only for halogenated solvents. Furthermore, reduced threshold fluences, only small incubation effects, and a constant etch rate in dependence on the pulse number were found. The experimental data suggest an additional etch process at low laser fluences characterized by the very low etch rate and the smooth etching observed only with halogen-containing solvents. The generation of halogen radicals/compounds close to the heated surface due to the decomposition of the solvent causing the attack of the surface seems the most probable mechanism. PACS 81.65.Cf; 81.05.Kf; 79.20.Ds; 61.80.Ba; 42.55.Lt; 68.45.Da  相似文献   

6.
Time-dependent Boltzmann electron distribution calculations have been made at constant power and pressure in a SF6/O2 plasma with a varying oxygen mole fraction. The results show that as the oxygen fraction increases in a SF6/O2 plasma, the number of high-energy electrons in the tail of the electron distribution and the mean electron energy both increase significantly while the plasma is kept at the same reduced electric field E/N. Rate coefficients have been computed for the electron kinetic processes of these plasmas and merged within a kinetic equilibrium model for the plasma etch process, including neutral gas-phase chemistry, ion chemistry, and surface reactions. Model simulations show good agreement with experimental results for SF6/O2 etching of polysilicon and demonstrate that the anisotropic character of dilute SF6 plasma etching is related to the shift in the electron distribution with increasing oxygen fraction. Competition between F and O species for adsorption to silicon etching sites is also shown to be a factor in determining etch rates, but this competition is not significant until very large (> 80 percent) oxygen concentrations are present. Ionization rates and ion transport to the surface are shown to be much more important. The model simulations provide a rationale for explaining the very high etch rates observed at low-SF6 partial pressures and the increasing anisotropic etch character with greater oxygen dilution of SF6.  相似文献   

7.
We report on the fabrication of three dimensional micro-fluidic channels in fused silica glass using a combination of femtosecond laser writing and hydrofluoric acid wet etching to flexibly create various cross-sectional profiles of highly uniform shape and smooth vertical walls. The laser power, polarization, focusing depth, scanning angle and scanning speed were systematically studied with single- and multi-scan configurations to assess optimum micro-channel formation including etch rate, surface roughness, and stress-induced crack formation. We introduce the formation of vertical access-ports that extend the buried channel formation to unlimited length without tapering or distortion of the channel cross-sectional shape.  相似文献   

8.
The dry etching characteristics of bulk, single-crystal zinc-oxide (ZnO) and rf-sputtered indium-zinc-oxide (IZO) films have been investigated using an inductively coupled high-density plasma with different plasma chemistries. The introduction of interhalogens such as ICl, IBr, BI3, and BBr3 to the Ar plasma produced no enhancement of the ZnO and IZO etch rates with respect to physical sputtering in a pure argon atmosphere under the same experimental conditions. In these plasma chemistries, the etch rate of both materials increased with source power and ion energy, indicating that ion bombardment plays an important role in enhancing desorption of etch products. Except in Ar/CH4/H2 discharges, the ZnO etch rate was very similar to that of IZO, which indicates that zinc and indium atoms are driven by a similar plasma etching dynamic. CH4/H2-containing plasmas produced higher etch rates for IZO than for ZnO due to the preferential desorption of the group III etch products. Application of the CH4/H2/Ar plasma to the etching of deep features in bulk, single-crystal ZnO produced highly anisotropic profiles although some trenches were observed near the sidewalls.  相似文献   

9.
Computation of etched track profiles needs the knowledge of the variable track etch rates along the ion trajectories. Using the depth-dependent track etch rates experimentally determined for perpendicularly incident protons, deuterons and alpha particles as well as 7Li, 11B, 12C, 14N and 16O ions of different energies simulations of the track development were performed. Two models of track etching were applied for that purpose recently published in literature. Although the models are based on the same physical fundamentals the results are slightly different. The reasons of the discrepancies were found by analysing the algorithms in detail. Comparison of the calculated track profiles with those determined experimentally from longitudinal sections of the etch pits showed good agreement for non-overetched as well as overetched tracks. The consistency of the whole experimental data set was checked by analysing the correlation of the track etch rates with geometric track parameters for all kinds of ions and etching times covered by the experiments.  相似文献   

10.
Chemically assisted ion beam etching (CAIBE) involving an Ar ion beam and a halogen ambient gas (Cl2, IBr3) has been used to etch high-quality laser facets for InGaAsP/InP bulk lasers (1.55 m). We achieved eich rates of 40.0–75.0 nm min–1 at substrate temperatures between-5 and +10°C. These low temperatures have allowed us to utilize UV-baked photoresists as well as PMMA as etch masks, facilitating very simple process development. Higher substrate temperatures (50 to 120°C) yield still higher etch rates, but at the expense of severely degraded surface morphologies. Angle resolved x-ray photoelectron spectroscopy (XPS) was investigated for observing etched InP surfaces. A disproportioned surface has been detected after etching in the higher temperature range; low temperatures yield stoichiometric surfaces.  相似文献   

11.
Abstract

Reactive ion etching always causes a dynamic radiation effect to crystalline silicon, beacause of an energetic particle bombardment. RIE induced radiation effects are mostly confined to the near surface within a projected range of impinging ions, but point defects, which are highly mobile at room temperatures, can migrate further into the bulk before a damaged surface layer is etched away. Competition between etch rates and damage rates ultimately determines a degree of the RIE damage residue: the slower the etch rate, the heavier the damage may be accumulated at the near surface, eventually leading to amorphization of the surface region. Also, a removal of the surface layer due to etching or sputtering enhances a chemical reaction between a bare surface and incoming radicals. This easily forms a foreign material on the surface which gives rise to a serious contamination problem. A post-cleaning at a low temperature is highly desirable whenever the surface of active devices must be exposed to reactive plasmas.  相似文献   

12.
A new technique for the rapid quantification of orientation-dependent etch rates, which uses micromachined test patterns and optical microscopy, has been developed. The etching of silicon in KOH etchants with and without isopropanol was studied. Etch rates measured with this technique are in good agreement with conventionally measured rates. In most cases, the etch rate anisotropies are well described by a simple model that is based on step-flow etching. Kinetic Monte Carlo simulations of etching were used to test the simple model and to generate approximate morphologies of the etched surfaces. Vicinal Si(110) surfaces display unusual, orientation-dependent etch rates in some etchants; the functional form of the etch rate anisotropy suggests that a morphological transition occurs on these highly reactive faces. In moderately concentrated KOH solutions where isopropanol is readily soluble, the measured etch rate anisotropies suggest that isopropanol stabilizes step-flow etching.  相似文献   

13.
In situ reflectivity measurements of the solid/liquid interface with a pump-probe setup were performed during laser-induced backside wet etching (LIBWE) of fused silica with KrF excimer laser using toluene as absorbing liquid. The intensity, the temporal shape, and the duration of the reflected light measured in dependence on the laser fluence are discussed referring to the surface modification and the bubble formation.The vaporisation of the superheated liquid at the solid interface causes a considerable increase of the reflectivity and gives information about the bubble lifetime. The alterations of the reflectivity after bubbles collapse can be explained with the changed optical properties due to surface modifications of the solid surface. Comparative studies of the reflectivity at different times and the etch rate behaviour in dependence on the laser fluence show that the in situ measured surface modification begins just at the etch threshold fluence and correlates further with etch rate behaviour and the etched surface appearance. The already observed surface modification at LIBWE due to a carbon deposition and structural changes of the near surface region are approved by the changes of the interface reflectivity and emphasizes the importance of the modified surface region in the laser-induced backside wet etching process.  相似文献   

14.
Laser-induced backside etching of fused silica with gallium as highly absorbing liquid is demonstrated using pulsed infrared laser radiation. The influences of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography were studied and the results are compared with these of excimer laser etching. The high reflectivity of the fused silica-gallium interface at IR wavelengths results in the measured high threshold fluences for etching of about 3 J/cm2 and 7 J/cm2 for 18 ns and 73 ns pulses, respectively. For both pulse lengths the etch rate rises almost linearly with laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. The etching process is almost free from incubation processes because etching with the first laser pulse and a constant etch rate were observed. The etched surfaces are well-defined with clear edges and a Gaussian-curved, smooth bottom. A roughness of about 1.5 nm rms was measured by AFM at an etch depth of 0.95 μm. The normalization of the etch rates with respect to the reflectivity and the pulse length results in similar etch rates and threshold fluence for the different pulse widths and wavelengths. It is concluded that etching is a thermal process including the laser heating, the materials melting, and the materials etching by mechanical forces. The backside etching of fused silica with IR-Nd:YAG laser can be a promising approach for the industrial usage of the backside etching of a wide range of materials. PACS 81.65.C; 81.05.J; 79.20.D; 61.80.B; 42.55.L  相似文献   

15.
In the present work a comparative study of track registration response of 40Ar ions in different types of Makrofol polycarbonates viz. Makrofol-KG, KL & N have been done. The etched track parameters viz. bulk etch rate, track etch rate, etch rate ratio, cone angle and etching efficiency were calculated. The variation of etching rates with temperature were found to be exponential and follow the Arrhenius equation. The values of activation energy for bulk and track etching were also calculated. Maximum etchable track length/range were also obtained and compared with the theoretical values obtained from computer program RANGE. From the results it is found that the polycarbonates having same chemical composition manufactured by different chemical processes have slightly different behavior.  相似文献   

16.
A new method for laser etching of transparent materials with a low etch rate and a very good surface quality is demonstrated. It is based on the pulsed UV-laser backside irradiation of a transparent material that is covered with an adsorbed toluene layer. This layer absorbs the laser radiation causing the etching of the solid. The threshold fluence for etching of fused silica amounts to 0.7 J/cm2. The constant etch rate of about 1.3 nm/pulse that has been observed in a fluence interval from 2 to 5 J/cm2 is evidence of a saturated process. The limited thickness of the adsorbed layer causes the low etch rates and the rate saturation. The etched surface structures have well defined edges and low surface roughness values of down to 0.4 nm rms. PACS 81.65.Cf; 81.05.Kf; 79.20.Ds; 61.80.Ba; 42.55.Lt  相似文献   

17.
高扬福  孙晓民  宋亦旭  阮聪 《物理学报》2014,63(24):248201-248201
刻蚀表面仿真是研究等离子体刻蚀工艺过程机理的重要手段.在刻蚀表面仿真方法中,刻蚀表面演化模型和离子刻蚀产额模型直接决定了刻蚀表面演化结果.但现有的刻蚀表面演化模型不够精确,且目前离子刻蚀产额模型主要来自分子动力学仿真和物理实验,而实际加工过程十分复杂,等效的离子刻蚀产额包含很多因素.针对这些问题,首先对当前的刻蚀表面演化模型进行改进,同时重新定义了离子刻蚀产额模型的优化目标,并利用实际刻蚀加工数据来优化离子刻蚀产额模型.为缩短优化模型所用时间,采用并行方法来加速优化过程.最后,将得到的离子刻蚀产额模型参数应用于采用元胞自动机法的刻蚀工艺实际仿真过程中.实验结果表明,该优化建模方法确实提高了仿真的精确度,同时优化过程所用时间也大大减少.  相似文献   

18.
A transitory etching regime after SiO2 dissolution and before bulk Si(1 1 1) etching in neutral NH4F solutions was monitored by in situ Brewster-angle reflectometry (BAR). An observed intermediate increase of the BAR reflectance signal is attributed to a fast dissolution of a stressed/strained interlayer beneath the SiO2/Si(1 1 1) interface. Similar effects were observed on thin thermal oxides (18.2 nm), grown on float zone silicon, as well as on ultra-thin native oxides (1.2 nm) on Czochralsky silicon. Native oxide covered samples showed an increased surface roughness in the course of interlayer dissolution while the surface is progressively covered with compounds of fluorinated silicon. The etch rate, determined by atomic force microscopy (AFM) and compared to the etch rate of bulk silicon, is increased by a factor of four. In the limit of extended etching, the known low etch rates for silicon in 40% NH4F are observed. Structural and chemical properties of the interfacial layer were analyzed by synchrotron radiation photoelectron spectroscopy (SRPES) which confirmed the presence of Si3+/4+ valence states throughout the interlayer and by near open-circuit potential (N-OCP) dark current measurements. As a result, oxide etch rates in NH4F in the pH-range 7–8 as well as the silicon interlayer depth can be assessed by in situ BAR.  相似文献   

19.
The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H2 mixtures and at constant bias voltage (−100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH4/H2 mixtures, the etch rate goes through a maximum for 10% CH4 indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH4/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH4 in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.  相似文献   

20.
A Monte Carlo routine was developed to simulate the motion and energetics of ions in the pores of a xerogel material under plasma etching conditions. The simulation included the effects of an applied electric field and input conditions for the pore as a function of pressure and applied voltage in the plasma reactor. We were interested in the ion energy in a pore, the ion penetration depth and the effect of ion energy on etching.At low pressures the nanoporous material etches faster than dense silicon dioxide. This is to be expected given the decrease in density and increase in surface area that arises due to the porosity. However, as the pressure is increased, the etch rate decreases dramatically and, eventually, the dense oxide may etch faster than the porous material. CHF3 was used as the etchant gas and, for this gas, we believe this behavior to be controlled by the ion energy and energy transport in the pores of the xerogel material. As the pressure in the plasma reactor is increased, the incoming ions switch over from etching activation to polymerisation activation. This agrees with the observed crossover in etch rate seen experimentally and with the cessation in etching as pressure is increased. The switch is affected by pore roughness and correlates with the average ion energy in the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号