首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
气泡线性振动时近海面气泡群的声散射   总被引:1,自引:0,他引:1       下载免费PDF全文
海洋中的不同成因的气泡群是常见的水下声学目标及声呐混响源,因此对水下气泡群进行声学建模意义重大。利用有效媒质理论描述气泡群内部的相速度及声衰减变化,并考虑到海洋中气泡群往往产生于不同界面附近,进一步利用球面波叠加原理描述海面对气泡群散射声波的再辐射,导出了平海面作用下气泡群声散射截面的一般表达式,建立了其声散射模型,研究了单一尺寸及混合尺寸气泡群的声学特性。数值分析表明,气泡群的谐振频率会随其半径或孔隙率增加而降低;由于海面的存在,气泡群声散射截面会随频率进行周期性变化,且随气泡群远离海面,这一变化逐渐加剧。此外,若气泡的黏滞阻尼项在全部阻尼项中占比较高,气泡群声散射强度会在谐振频率附近存在起伏振荡。该模型可为近海面鱼群、气泡羽流及海底泄漏的甲烷气体的声学建模提供一定的理论基础。  相似文献   

2.
二维粗糙海面的光散射及其红外成像   总被引:9,自引:3,他引:6  
张延冬  吴振森 《光学学报》2002,22(9):039-1043
首先根据JONSWAP海面功率谱模型数值模拟出二维粗糙海面,采用几何光学近拟与基尔霍夫(Kirchhoff)标量近似计算了二维海面的光散射,计算中将每一面元看成一具有微粗糙度的粗糙面而不是近似地当作平面,并利用投影法与射线追踪法数值计算了一定入射角和散射角下的遮挡函数,有效地提高了海面光散射计算的精确性。最后利用太阳光的光谱辐照度数值模拟了海面的3μm-5μm红外散射图像,对于红外探测器抑制海面反射太阳光造成的亮带干扰具有一定的参考价值。  相似文献   

3.
Bubble plumes of various void fractions and sizes were produced by varying the flow velocity of a water jet impinging normally on a water surface. The bubbles entrained at the surface were carried downwards by the fluid flow to depths ranging from 33 to 65 cm, and formed roughly cylindrical plumes with diameters ranging from 12 to 27 cm. The acoustic emissions from the plumes were recorded onto digital audio tape using a hydrophone placed outside the cloud at distances ranging from 50 cm to 16.0 m. Closeup video images of the individual bubbles within the plume were also taken in order to gain knowledge of the bubble size distributions. The experiments were performed in both fresh-water and salt-water environments. The fresh-water clouds emitted sounds with a modal structure that was significantly different from that produced by the salt-water clouds. Furthermore, the smaller bubbles present in the salt-water clouds have a fundamental effect on the amplification of turbulence noise, generating sound at significant levels for frequencies up to several hundred Hertz.  相似文献   

4.
Hydrocarbon sources on the ocean floor produce buoyant bubble plumes, i.e., gas flares. In winter, bubbles reaching the surface freeze in an ice sheet. Such clouds of frozen bubbles are observable in Arctic seas and are usual elements of ice sheets of lakes, e.g., Lake Baikal. Based on the general solution of the problem of scattering by a sphere in an isotropic elastic medium, the frozen bubble scattering cross section is found. The theory of multiple scattering by frozen bubble plume is derived. The structure of low-frequency resonances corresponding to collective oscillations of a bubble cloud is described.  相似文献   

5.
This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

6.
The scattering of optical wave from two dimensional rough sea surfaces is studied first with method of facets. The sea surface is divided into many facets, and each facet is treated as a surface with small roughness instead of a smooth plane, therefore more practical and effective. In addition the shadowing function of sea surfaces for arbitrary incident and scattering angles is numerically calculated with the Z-BUFFER method, which applies to any kinks of rough surfaces compared with the methods available. Finally the spectral irradiance of the sun and the spectral radiance of the sky for different time at sea level with fine weather are obtained with the software of Lowtran7, and the scattering of the radiation of the sun and the sky from two dimensional rough sea surfaces for different time, waveband and wind speed is studied, which is of great reference value for reducing the interference to the infrared detector due to the scattering of the radiation of the sun and the sky from sea surfaces.  相似文献   

7.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

8.
针对舰船在海上航行时形成的尾迹包含多类信息,利用Kelvin尾迹模型得到舰船速度为5 m/s、10 m/s和15 m/s的尾迹最大波高分别为0.5 m、1.5 m和2.5 m。通过海浪Pierson Moscowitz谱模型描述海面风速分别为5 m/s、8 m/s和10 m/s下的复杂海面背景模型。基于海面背景和尾迹区域的几何差异,建立了Kelvin尾迹的红外发射模型,得到不同海面风速、不同舰船航速和不同探测天顶角下的红外特征仿真图像。仿真结果表明,红外图像的灰度极大值位于尾迹波峰处,海面风速由5 m/s增加到10 m/s时,尾迹区域与海面背景平均灰度差值由100逐渐减小,直至无差异。相同海面风速下,舰船速度由5 m/s增加到15 m/s,尾迹波长由10 m增加到40 m,红外特征明显。改变探测器天顶角分别为0和30时,红外图像差异较小,当天顶角增大到60时,尾迹区域灰度值接近海面背景,差值小于30,尾迹的辨识难度增加。  相似文献   

9.
 针对激光点对点通信方式的不足,根据舰艇编队通信的实际需要,提出了利用海面作为激光漫反射媒介的一对多的组网通信方法,并且采用基尔霍夫近似的方法对激光海面漫反射通信的特性进行了研究。通过对激光光束入射海面后产生的散射场的分析计算,采用遮蔽函数对计算过程中的阴影效应加以修正,得出了较为准确的2维激光海面双站散射系数和后向散射系数,并进行了实验验证,说明了激光海面漫反射组网通信方法的可行性。  相似文献   

10.
In the framework of a two-scale scattering model, radar backscattering from the rough sea surface was considered. The sea surface was modelled as a superposition of a nonlinear, large-scale Gerstner's wave and small-scale resonant Bragg scattering ripples. The zero-order diffracted field was found by a geometrical optics approach, with shadowing taken into account, and by an 'exact' solution of the diffraction problem obtained numerically. For vertical and horizontal polarizations, the spatial distribution of specific scattering cross sections along the large-scale wave was obtained. The spatially averaged specific backscattering cross sections, as well as the mean Doppler frequency shifts at both polarizations, obtained by the geometrical optics approach are compared with those obtained by using the 'exact' solution of the large-scale diffraction problem. The roles of shadowing and multiple wave scattering processes are discussed, and qualitative explanations of the difference between these two approaches are given.  相似文献   

11.
The background radiation contribution is an important component of target scattering characteristics. A study is made on target scattering characteristics from complex background radiation, with contributions of the sun and the sea and sky background and that among each components of target. In this paper, the shadowing function of sea surface is numerically calculated by using the Z-BUFFER shadowing elimination algorithm, and the scattering of each facet of sea surface and target from the sun and the sky background infrared radiation is computed based on the rough surface scattering model as well as the infrared self-radiation of the sea surface. Finally, a numerical calculation of the forward and backward radiance of a near-sea circular cylinder scattering from the sun, the sea and sky background infrared radiation of near sea target and the infrared self-radiation of the target skin have been made. The results show the important influences of each contribution on target scattering from the sea and sky background radiation in 3-5 m and 8-12 m bands.  相似文献   

12.
We investigate shadowing effects in deep-inelastic scattering from nuclei at small valuesx < 0.1 of the Bjorken variable. Unifying aspects of generalized vector meson dominance and color transparency we first develop a model for deep-inelastic scattering from free nucleons at smallx. In application to nuclear targets we find that the coherent interaction of quark-antiquark fluctuations with nucleons in a nucleus leads to the observed shadowing atx < 0.1. We compare our results with most of the recent data for a large variety of nuclei and examine in particular the Q2 dependence of the shadowing effect. While the coherent interaction of low mass vector mesons causes a major part of the shadowing observed in the Q2 range of current experiments, the coherent scattering of continuum quark-antiquark pairs is also important and guarantees a very weak overall Q2 dependence of the effect. We also discuss shadowing in deuterium and its implications for the quark flavor structure of nucleons. Finally we comment on shadowing effects in high-energy photon-nucleus reactions with real photons.  相似文献   

13.
Reliable predictions of sea-surface backscattering strength are required for sonar performance modeling. These are, however, difficult to obtain as measurements of sea-surface backscattering are not available at small grazing angles relevant to low-frequency active sonar (1-3 kHz). Accurate theoretical predictions of scattering strength require a good understanding of physical mechanisms giving rise to the scattering and the relative importance of these. In this paper, scattering from individual resonant bubbles is introduced as a potential mechanism and a scattering model is derived that incorporates the contribution from these together with that of rough surface scattering. The model results are fitted to Critical Sea Test (CST) measurements at a frequency of 940 Hz, treating the number of large bubbles, parameterized through the spectral slope of the size spectrum for bubbles whose radii exceed 1 mm, as a free parameter. This procedure illustrates that the CST data can be explained by scattering from a small number of large resonant bubbles, indicating that these provide an alternative mechanism to that of scattering from bubble clouds.  相似文献   

14.
In this paper, the bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase method and scalar approximation with shadowing effect is investigated. Both of these approaches use the Kirchhoff integral. With the stationary phase, the bistatic cross section is formulated in terms of the surface height joint characteristic function where the shadowing effect is investigated. In the case of the scalar approximation, the scattering function is computed from the previous characteristic function and in terms of expected values for the integrations over the slopes, where the shadowing effect is analysed analytically. Both of these formulations are compared with experimental data obtained from a Gaussian one-dimensional randomly rough perfectly-conducting surface. With the stationary-phase method, the results are applied to a two-dimensional sea surface.  相似文献   

15.
Abstract

In this paper, the bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase method and scalar approximation with shadowing effect is investigated. Both of these approaches use the Kirchhoff integral. With the stationary phase, the bistatic cross section is formulated in terms of the surface height joint characteristic function where the shadowing effect is investigated. In the case of the scalar approximation, the scattering function is computed from the previous characteristic function and in terms of expected values for the integrations over the slopes, where the shadowing effect is analysed analytically. Both of these formulations are compared with experimental data obtained from a Gaussian one-dimensional randomly rough perfectly-conducting surface. With the stationary-phase method, the results are applied to a two-dimensional sea surface.  相似文献   

16.
Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.  相似文献   

17.
The effect of internal wave solitons on the sound field generated by a point source in a shallow sea is considered. In the framework of the theory of “horizontal rays and vertical modes,” the sound field pattern governed by the aforementioned hydrodynamic effect is investigated. It is shown that solitons can induce time-periodic focusing and defocusing of horizontal rays propagating at shallow angles to the internal wave front. This may result in the formation of “dynamical” horizontal sound channels, which, in its turn, results in considerable temporal fluctuations of the field along the acoustic track oriented along the internal wave front. For the sound field calculations, an approach is developed on the basis of the parabolic approximation in the horizontal plane and the mode representation in the vertical direction. The results obtained can be used for remote monitoring of internal wave packets in a shallow sea.  相似文献   

18.
Radar backscatter from mesoscale breaking waves on the sea surface is considered. Breaking waves are shown to be responsible for sea spikes and high Doppler shift with horizontal polarization observed at low grazing angles. The backscatter cross sections for scattering from a single breaking wave are computed for both orthogonal polarizations. An estimate is obtained of the backscatter cross section averaged over the sea surface. It is shown that the main scattering mechanisms are specular backscatter from the steep front of the breaking wave, and backscatter enhancement due to double-bounce scattering from the wave itself and from the foot of the breaking wave. Horizontally polarized backscatter is shown to be considerably higher than vertically polarized backscatter when the angle of incidence is close to the Brewster angle.  相似文献   

19.
In this paper, the monostatic (transmitter and receiver are located at the same place) and bistatic (transmitter and receiver are distinct) statistical shadowing functions from an anisotropic two-dimensional randomly rough surface are presented. This parameter is especially important in the case of grazing angles for computing the bistatic scattering coefficient in optical and microwave frequencies. The objective of this paper is to extend the previous work (Bourlier C, Berginc G and Saillard J 2002 Waves Random Media 12 145-74), valid for a one-dimensional surface, to a two-dimensional anistropic surface by considering a joint Gaussian process of surface slopes and heights separating two points of the surface. The monostatic average (statistical shadowing function average over the statistical variables) shadowing function is then performed in polar coordinates with respect to the incidence angle, the azimuthal direction and the surface height two-dimensional autocorrelation function. In addition, for a bistatic configuration, it depends on the incidence angle and azimuthal direction of the receiver. For Gaussian and Lorentzian correlation profiles and practically important power-type spectra such as the Pierson-Moskowitz sea roughness spectrum, the numerical solution, obtained from generating the surface Gaussian elevations (Monte Carlo method), is compared with the uncorrelated and correlated models. The results show that the correlation underestimates the shadow slightly, whereas the uncorrelated results weakly overpredict the shadow and are close to the numerical solution.  相似文献   

20.
This study examines near-surface bubble data obtained with a self-contained 200-kHz inverted echo-sounder deployed at Ocean Station Papa (NE Pacific, 1400 km west of Vancouver Is.) over an 81-day period in the spring of 1996. The instrument operated continuously, recording calibrated volume scattering profiles from near-surface bubbles with 3-s and 30-cm resolution. The data show the frequent occurrence of bubbles organized into vertical, plume-like structures, presumably drawn downwards by turbulence and other near-surface circulations. Average bubble plume penetrations of up to 15 m were observed, with maximum penetrations up to 25 m. Within the plumes, the backscatter cross section exhibited an exponential decay with depth, with e-folding scale in the range 0.5 to 3 m, increasing proportionally to the square of average plume depth. Using standard models for bubble scattering, and incorporating recent acoustic resonator measurements of bubble-size distributions along with actual bubble plume data, high-frequency near-surface sonar performance models were developed. These models show that on a ping-to-ping basis the bubble plume structures can induce significant spatial variations in the reverberation level and path-integrated extinction losses to near-surface targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号