首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work deals with the solvability near the characteristic set Σ = {0} × S 1 of operators of the form \({L=\partial/\partial t + (x^na(x) + ix^mb(x))\partial/\partial x}\), \({b\not\equiv0}\) and a(0) ≠ 0, defined on \({\Omega_\epsilon=(-\epsilon,\epsilon)\times S^1}\), \({\epsilon >0 }\), where a and b are real-valued smooth functions in \({(-\epsilon,\epsilon)}\) and m ≥ 2n. It is shown that given f belonging to a subspace of finite codimension of \({C^\infty(\Omega_\epsilon)}\) there is a solution \({u\in L^\infty}\) of the equation Lu = f in a neighborhood of Σ; moreover, the L regularity is sharp.  相似文献   

2.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

3.
Perturbation from symmetry for indefinite semilinear elliptic equations   总被引:1,自引:0,他引:1  
We prove the existence of an unbounded sequence of solutions for an elliptic equation of the form \({-\Delta u=\lambda u + a(x)g(u)+f(x), u\in H^1_0(\Omega)}\), where \({\lambda \in \mathbb{R}, g(\cdot)}\) is subcritical and superlinear at infinity, and a(x) changes sign in Ω; moreover, g( ? s) =  ? g(s) \({\forall s}\). The proof uses Rabinowitz’s perturbation method applied to a suitably truncated problem; subsequent energy and Morse index estimates allow us to recover the original problem. We consider the case of \({\Omega\subset \mathbb{R}^N}\) bounded as well as \({\Omega=\mathbb{R}^N, \, N\geqslant 3}\).  相似文献   

4.
Let (M, g 0) be a compact Riemann surface with boundary and with negative Euler characteristic. Let f(x) be a strictly negative smooth function on \({\bar{M}}\) and denote by \({\sigma(x)}\) the value of f in the interior and \({\zeta(x)}\) the value of f on the boundary. By studying the evolution of curvatures on M, we prove that there exist a constant \({\lambda_\infty}\) and a conformal metric \({g_\infty}\) such that \({\lambda_\infty\sigma(x)}\) and \({\lambda_\infty\zeta(x)}\) can be realized as the Gaussian curvature and boundary geodesic curvature of \({g_\infty}\) respectively.  相似文献   

5.
In this paper, a large family \({\mathcal{F}^k(l)}\) of binary sequences of period 2 n ? 1 is constructed for odd n = 2m + 1, where k is any integer with gcd(n, k) = 1 and l is an integer with 1 ≤ l ≤ m. This generalizes the construction of modified Gold sequences by Rothaus. It is shown that \({\mathcal{F}^k(l)}\) has family size \({2^{ln}+2^{(l-1)n}+\cdots+2^n+1}\), maximum nontrivial correlation magnitude 1 + 2m+l. Based on the theory of quadratic forms over finite fields, all exact correlation values between sequences in \({\mathcal{F}^k(l)}\) are determined. Furthermore, the family \({\mathcal{F}^k(2)}\) is discussed in detail to compute its complete correlation distribution.  相似文献   

6.
In this paper the authors study the boundedness for a large class of sublinear operators \({T_{\alpha}, \alpha \in [0,n)}\) generated by Calderón–Zygmund operators (α = 0) and generated by Riesz potential operator (α > 0) on generalized Morrey spaces \({M_{p,\varphi}}\) . As an application of the above result, the boundeness of the commutator of sublinear operators \({T_{b,\alpha}, \alpha \in [0,n)}\) on generalized Morrey spaces is also obtained. In the case \({b \in BMO}\) and T b,α is a sublinear operator, we find the sufficient conditions on the pair \({(\varphi_1,\varphi_2)}\) which ensures the boundedness of the operators \({T_{b,\alpha}, \alpha \in [0,n)}\) from one generalized Morrey space \({M_{p,\varphi_1}}\) to another \({M_{q,\varphi_2}}\) with 1/p ? 1/q = α/n. In all the cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \({(\varphi_1,\varphi_2)}\) , which do not assume any assumption on monotonicity of \({\varphi_1, \, \varphi_2}\) in r. Conditions of these theorems are satisfied by many important operators in analysis, in particular, Littlewood–Paley operator, Marcinkiewicz operator and Bochner–Riesz operator.  相似文献   

7.
It is shown that Gelfand transforms of elements \({f\in L^{\infty} (\mu)}\) are almost constant at almost every fiber \({\Pi^{-1}(\{x\})}\) of the spectrum of L (μ) in the following sense: for each \({f\in L^{\infty} (\mu)}\) there is an open dense subset U = U(f) of this spectrum having full measure and such that the Gelfand transform of f is constant on the intersection \({\Pi^{-1}(\{x\})\cap U}\). As an application a new approach to disintegration of measures is presented, allowing one to drop the usually taken separability assumption.  相似文献   

8.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

9.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

10.
Let \({A=-(\nabla-i{\vec a})\cdot (\nabla-i{\vec a}) +V}\) be a magnetic Schrödinger operator acting on \({L^2({\mathbb R}^n)}\), n ≥  1, where \({{\vec a}=(a_1, \ldots, a_n)\in L^2_{\rm loc}({\mathbb R}^n, {\mathbb R}^n)}\) and \({0\leq V\in L^1_{\rm loc}({\mathbb R}^n)}\). In this paper, we show that when a function \({b\in {\rm BMO}({\mathbb R}^n)}\), the commutators [b, T k ]f = T k (b f) ? b T k f, k = 1, . . . , n, are bounded on \({L^p({\mathbb R}^n)}\) for all 1 < p < 2, where the operators T k are Riesz transforms (?/?x k  ? i a k )A ?1/2 associated with A.  相似文献   

11.
We consider a system \({\{X_1,\ldots,X_N\}}\) of N particles in a bounded d-dimensional domain D. During periods in which none of the particles \({X_1,\ldots,X_N}\) hit the boundary \({\partial D}\) , the system behaves like N independent d-dimensional Brownian motions. When one of the particles hits the boundary \({\partial D}\) , then it instantaneously jumps to the site of one of the remaining N ? 1 particles with probability (N ? 1)?1. For the system \({\{X_1,\ldots,X_N\}}\) , the existence of an invariant measure \({\nu\mskip-12mu \nu}\) has been demonstrated in Burdzy et al. [Comm Math Phys 214(3):679–703, 2000]. We provide a structural formula for this invariant measure \({\nu\mskip-12mu \nu}\) in terms of the invariant measure m of the Markov chain \({\xi}\) which returns the sites the process \({X:=(X_1,\ldots,X_N)}\) jumps to after hitting the boundary \({\partial D^N}\) . In addition, we characterize the asymptotic behavior of the invariant measure m of \({\xi}\) when N → ∞. Using the methods of the paper, we provide a rigorous proof of the fact that the stationary empirical measure processes \({\frac1N\sum_{i=1}^N\delta_{X_i}}\) converge weakly as N → ∞ to a deterministic constant motion. This motion is concentrated on the probability measure whose density with respect to the Lebesgue measure is the first eigenfunction of the Dirichlet Laplacian on D. This result can be regarded as a complement to a previous one in Grigorescu and Kang [Stoch Process Appl 110(1):111–143, 2004].  相似文献   

12.
We show that the largest possible diameter \({\delta(d,k)}\) of a d-dimensional polytope whose vertices have integer coordinates ranging between 0 and k is at most \({kd - \lceil2d/3\rceil-(k-3)}\) when \({k\geq3}\) . In addition, we show that \({\delta(4,3)=8}\) . This substantiates the conjecture whereby \({\delta(d,k)}\) is at most \({\lfloor(k+1)d/2\rfloor}\) and is achieved by a Minkowski sum of lattice vectors.  相似文献   

13.
Let F be a non-Archimedean local field of characteristic 0, let G be the group of F-rational points of a connected reductive group defined over F and let \({G\prime}\) be the group of F-rational points of its quasi-split inner form. Given standard modules \({I(\tau, \nu )}\) and \({I(\tau\prime, \nu\prime)}\) for G and \({G\prime}\) respectively with \({\tau\prime}\) a generic tempered representation, such that the Harish-Chandra \({\mu}\)-function of a representation in the supercuspidal support of \({\tau}\) agrees with the one of a generic essentially square-integral representation in some Jacquet module of \({\tau\prime}\) (after a suitable identification of the underlying spaces under which \({\nu = \nu\prime}\)), we show that \({I(\tau, \nu)}\) is irreducible whenever \({I(\tau\prime, \nu\prime)}\) is. The conditions are satisfied if the Langlands quotients \({J(\tau, \nu})\) and \({J(\tau\prime, \nu\prime)}\) of respectively \({I(\tau, \nu)}\) and \({I(\tau\prime, \nu\prime)}\) lie in the same Vogan L-packet (whenever this Vogan L-packet is defined), proving that, for any Vogan L-packet, all the standard modules with Langlands quotient in a given Vogan L-packet are irreducible, if and only if this Vogan L-packet contains a generic representation. This result for generic Vogan L-packets was proven for quasi-split orthogonal and symplectic groups by Moeglin-Waldspurger and used in their proof of the general case of the local Gan-Gross-Prasad conjectures for these groups.  相似文献   

14.
Consider an arithmetic group \({\mathbf{G}(O_S)}\), where \({\mathbf{G}}\) is an affine group scheme with connected, simply connected absolutely almost simple generic fiber, defined over the ring of S-integers O S of a number field K with respect to a finite set of places S. For each \({n \in \mathbb{N}}\), let \({R_n(\mathbf{G}(O_S))}\) denote the number of irreducible complex representations of \({\mathbf{G}(O_S)}\) of dimension at most n. The degree of representation growth \({\alpha(\mathbf{G}(O_S)) = \lim_{n \rightarrow\infty}\log R_n(\mathbf{G}(O_S)) / \log n}\) is finite if and only if \({\mathbf{G}(O_S)}\) has the weak Congruence Subgroup Property. We establish that for every \({\mathbf{G}(O_S)}\) with the weak Congruence Subgroup Property the invariant \({\alpha(\mathbf{G}(O_S))}\) is already determined by the absolute root system of \({\mathbf{G}}\). To show this we demonstrate that the abscissae of convergence of the representation zeta functions of such groups are invariant under base extensions \({K{\subset}L}\). We deduce from our result a variant of a conjecture of Larsen and Lubotzky regarding the representation growth of irreducible lattices in higher rank semi-simple groups. In particular, this reduces Larsen and Lubotzky’s conjecture to Serre’s conjecture on the weak Congruence Subgroup Property, which it refines.  相似文献   

15.
Given an i.i.d sample (Y i , Z i ), taking values in \({\mathbb{R}^{d'}\times\mathbb{R}^d}\), we consider a collection Nadarya–Watson kernel estimators of the conditional expectations \({\mathbb{E}( <\,c_g(z),g(Y)>+d_g(z)\mid Z=z)}\), where z belongs to a compact set \({H\subset \mathbb{R}^d}\), g a Borel function on \({\mathbb{R}^{d'}}\) and c g (·), d g (·) are continuous functions on \({\mathbb{R}^d}\). Given two bandwidth sequences \({h_n<\mathfrak{h}_n}\) fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in \({g\in\mathcal{G},\;z\in H}\) and \({h_n\le h\le \mathfrak{h}_n}\) under mild conditions on the density f Z , the class \({\mathcal{G}}\), the kernel K and the functions c g (·), d g (·). We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities \({\mathbb{P}( Y\in C\mid Z=z)}\), that hold uniformly in \({z\in H,\; C\in \mathcal{C},\; h\in [h_n,\mathfrak{h}_n]}\). Here \({\mathcal{C}}\) is a Vapnik–Chervonenkis class of sets.  相似文献   

16.
Let C be a unital AH-algebra and A be a unital simple C*-algebras with tracial rank zero. It has been shown that two unital monomorphisms \({\phi, \psi: C\to A}\) are approximately unitarily equivalent if and only if
$ [\phi]=[\psi]\quad {\rm in}\quad KL(C,A)\quad {\rm and}\quad \tau\circ \phi=\tau\circ \psi \quad{\rm for\, all}\tau\in T(A),$
where T(A) is the tracial state space of A. In this paper we prove the following: Given \({\kappa\in KL(C,A)}\) with \({\kappa(K_0(C)_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) and with κ([1 C ]) = [1 A ] and a continuous affine map \({\lambda: T(A)\to T_{\mathfrak f}(C)}\) which is compatible with κ, where \({T_{\mathfrak f}(C)}\) is the convex set of all faithful tracial states, there exists a unital monomorphism \({\phi: C\to A}\) such that
$[\phi]=\kappa\quad{\rm and}\quad \tau\circ \phi(c)=\lambda(\tau)(c)$
for all \({c\in C_{s.a.}}\) and \({\tau\in T(A).}\) Denote by \({{\rm Mon}_{au}^e(C,A)}\) the set of approximate unitary equivalence classes of unital monomorphisms. We provide a bijective map
$\Lambda: {\rm Mon}_{au}^e (C,A)\to KLT(C,A)^{++},$
where KLT(C, A)++ is the set of compatible pairs of elements in KL(C, A)++ and continuous affine maps from T(A) to \({T_{\mathfrak f}(C).}\) Moreover, we found that there are compact metric spaces X, unital simple AF-algebras A and \({\kappa\in KL(C(X), A)}\) with \({\kappa(K_0(C(X))_+\setminus\{0\})\subset K_0(A)_+\setminus\{0\}}\) for which there is no homomorphism h: C(X) → A so that [h] = κ.
  相似文献   

17.
Assume that we observe a stationary Gaussian process X(t), \({t \in [-r, T]}\) , which satisfies the affine stochastic delay differential equation
$d X(t) = \int\limits_{[-r,0]}X(t+u)\, a_\vartheta (du)\,dt +dW(t), \quad t\ge 0,$
where W(t), t ≥ 0, is a standard Wiener process independent of X(t), \({t\in [-r, 0]}\) , and \({a_\vartheta}\) is a finite signed measure on [?r, 0], \({\vartheta\in\Theta}\) . The parameter \({\vartheta}\) is unknown and has to be estimated based on the observation. In this paper we consider the case where \({\Theta=(\vartheta_0,\vartheta_1)}\) , \({-\infty\,<\,\vartheta_0 <0 \,<\,\vartheta_1\,<\,\infty}\) , and the measures \({a_\vartheta}\) are of the form
$a_\vartheta = a+b_\vartheta-b,$
where a and b are finite signed measure on [?r, 0] and \({b_\vartheta}\) is the translate of b by \({\vartheta}\) . We study the limit behaviour of the normalized likelihoods
$Z_{T,\vartheta}(u) = \frac{dP_T^{\vartheta+\delta_T u}}{dP_T^\vartheta}$
as T→ ∞, where \({P_T^\vartheta}\) is the distribution of the observation if the true value of the parameter is \({\vartheta}\) . A necessary and sufficient condition for the existence of a rescaling function δ T such that \({Z_{T,\vartheta}(u)}\) converges in distribution to an appropriate nondegenerate limiting function \({Z_{\vartheta}(u)}\) is found. It turns out that then the limiting function \({Z_{\vartheta}(u)}\) is of the form
$Z_\vartheta(u)=\exp\left(B^H(u) - E[B^H(u)]^2/2\right),$
where \({H\in[1/2,1]}\) and B H (u), \({u\in\mathbb{R}}\) , is a fractional Brownian motion with index H, and δ T  = T ?1/(2H) ?(T) with a slowly varying function ?. Every \({H\in[1/2,1]}\) may occur in this framework. As a consequence, the asymptotic behaviour of maximum likelihood and Bayes estimators is found.
  相似文献   

18.
We present methods for computing the explicit decomposition of the minimal simple affine W-algebra \({W_k(\mathfrak{g}, \theta)}\) as a module for its maximal affine subalgebra \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) at a conformal level k, that is, whenever the Virasoro vectors of \({W_k(\mathfrak{g}, \theta)}\) and \({\mathscr{V}_k(\mathfrak{g}^\natural)}\) coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when \({\mathfrak{g}^{\natural}}\) is a semisimple Lie algebra, we show that, for a suitable conformal level k, \({W_k(\mathfrak{g}, \theta)}\) is isomorphic to an extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) by its simple module. We are able to prove that in certain cases \({W_k(\mathfrak{g}, \theta)}\) is a simple current extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\). In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra \({W_{k}(\mathit{sl}(4), \theta)}\) at k = ?8/3. We prove, as conjectured in [3], that \({W_{k}(\mathit{sl}(4), \theta)}\) is isomorphic to the vertex algebra \({\mathscr{R}^{(3)}}\), and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra \({V_k (\mathit{sl}(n))}\) at certain admissible levels and for \({V_k (\mathit{sl}(m \vert n)), m\ne n, m,n\geq 1}\) at arbitrary levels.  相似文献   

19.
Let M be a finitely generated module of dimension d and depth t over a Noetherian local ring (A, \({\mathfrak{m}}\)) and I an \({\mathfrak{m}}\)-primary ideal. In the main result it is shown that the last t Hilbert coefficients \({e_{d-t+1}(I,M),\ldots, e_{d}(I,M)}\) are bounded below and above in terms of the first d ? t + 1 Hilbert coefficients \({e_{0}(I,M),\ldots,e_{d-t}(I,M)}\) and d.  相似文献   

20.
We study the quantization with respect to the geometric mean error for probability measures μ on \({\mathbb{R}^d}\) for which there exist some constants C, η > 0 such that \({\mu(B(x,\varepsilon))\leq C\varepsilon^\eta}\) for all ε > 0 and all \({x\in\mathbb{R}^d}\) . For such measures μ, we prove that the upper quantization dimension \({\overline{D}(\mu)}\) of μ is bounded from above by its upper packing dimension and the lower one \({\underline{D}(\mu)}\) is bounded from below by its lower Hausdorff dimension. This enables us to calculate the quantization dimension for a large class of probability measures which have nice local behavior, including the self-affine measures on general Sierpiński carpets and self-conformal measures. Moreover, based on our previous work, we prove that the upper and lower quantization coefficient for a self-conformal measure are both positive and finite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号