首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Population kinetics of the upper4I11/2 and lower4I13/2 laser states of the Er3+ ion were studied experimentally and theoretically in (Er)BaY2F8, (Er)YLF, (Er)YSGG, (Er)CaF2 and (Er)YALO. Fluorescence from these states to the4I15/2 ground state was excited through upconversion simultaneously with the4I11/2 4I13/2 lasing using 1.53 µm radiation from an erbium : glass laser for optical pumping. Lifetimes of both states are altered during lasing by co-operative energy transfer processes: the lifetime of the lower state 1 is shortened and that of the upper state 2 increased with the resultant ratio 2/1>1. After lasing the lifetime ratio returns to the normal value 2/1 <1; that=" is,=" one=" obtained=" under=" weak=" ultraviolet=" excitation.=" kinetic=" rate=" equations=" for=" the=" population=" density=" functions=" for=" both=" laser=" states=" were=" set=" up=" and=" solved=" by=" approximation=" in=" three=" time=" domains.=" it=" was=" assumed=" that=" only=" one=" co-operative=" energy=" transfer=" process=" operates=" in=" the=" laser=" crystals=" and=" determines=" the=" population=" inversion=" kinetics.=" consistency=" relationships=" for=" comparison=" of=" the=" theoretical=" results=" with=" the=" experiment=" were=" developed.=" only=">2F8 spectral features showed close agreement with theory, resulting in a high score of 94% for the overall correlation in the consistency test, whereas all other crystals scored <50%. as=" a=" result=" of=" this=" high=" correlation,=" a=" close=" match=" between=" theoretical=" and=" experimental=" population=" decay=" curves=" was=" shown=" for=">2F8. Most probably, more than one energy transfer process shapes the decay curves and determines the population inversion kinetics for the other laser crystals. (Er)YALO showed little lifetime change for the laser states, apparently due to inefficient co-operative energy transfer processes. As a result it probably lased in a self-terminating short-pulse mode.  相似文献   

2.
Doubly doped BaY2F8:Er,Nd scintillation crystals were grown by modified micro-pulling-down method. The Er co-doping was chosen to enhance the energy transfer from the host lattice to the Nd3+ luminescence center via the 5d-levels of Er3+, which can be enabled by the overlap of Er3+ 5d-4f emission spectrum with the Nd3+ 4f-5d absorption. The energy transfer was clearly evidenced in the BaY2F8:Er,Nd. The processes are complicated by energy migration to killer centres and/or cross-relaxation processes. The luminescence and energy transfer mechanism are discussed.  相似文献   

3.
Features of the generation of laser lines upon the diode pumping of Er:BaY2F8 crystals are studied. Blue, violet, and UV laser lines are most efficiently generated via the nonlinear frequency self-addition of 541 and 553 nm lines of Er3+ radiation with the corresponding IR line of Er3+ for Er:BaY2F8 crystals pumped by a laser diode with a wavelength of 972 nm.  相似文献   

4.
Vacuum ultraviolet luminescence of Er3+ ions in LiYF4 and BaY2F8 crystals has been investigated. It is revealed that under excitation by 193 nm radiation from an ArF excimer laser the interconfigurational 5d–4f radiative transitions in Er3+ ions are observed. It is shown that from the LiYF4:Er crystal only the spin-forbidden luminescence (λ = 165 nm) is detected, whereas both the spin-forbidden (λ = 169 nm) and spin-allowed (λ = 160.5 nm) components are observed from the BaY2F8:Er crystal.  相似文献   

5.
We show the possibility of obtaining UV luminescence from 5d-4f transitions of rare-earth ions in the BaY2F8: (Yb3+, Pr3+, Ce3+) crystal under upconversion excitation by standard laser diodes with lasing wavelengths of 960, 808, and 840 nm. Various upconversion mechanisms of pumping for populating the higher-lying energy levels of the active ions, as well as methods of adaptation of the active medium BaY2F8: (Yb3+, Pr3+, Ce3+) to these mechanisms, are considered.  相似文献   

6.
We have examined the fluorescence characteristics of the garnet-type crystal Yb3Al5O12 : Er3+ (YbAlG : Er3+) and studied the energy transfer process between the two rare earth ions over a temperature range 78–297 K. Certain data were compared with those of YAlG : Er3+. In YbAlG : Er3+, Yb fluorescence is observed at ?1.03 μm (corresponding to the 2F5/22F7/2 transition); Er fluorescence occurs at ?8500 Å (4S3/24I13/2 transition) and ?1.6 μm (4I13/24I15/2 transition). In YAlG : Er3+, the same Er lines are observed with the addition of a band at ?1 μ (4I11/24I15/2 transition). In YbAlG : Er3+, the decay pattern of the Yb emission is purely exponential at all the temperatures examined; the fluorescence lifetime ranges from 36 μ s (at 78 K) to 74 μs(at 269 K). The lifetime of the Er4I13/2 level in the same sample increases from 5.4 ms (at 78 K) to 6.85 ms (at 294 K). The lifetime of this Er level in YAlG : Er3+ is weakly temperature dependent over the same range with a value of ?12 ms. Excitation spectra were obtained for the Er 1.53 μm fluorescence in YbAlG : Er3+ in order to verify the presence of Yb → Er energy transfer in this sample. The presence of the Yb absorption band (?1 μm) in these spectra provides direct evidence of this energy transfer. The relative enhancement of this Yb band with respect to the Er bands in going from 78 K to 175 K is an indication of a more efficient transfer at the higher temperature. Excitation spectra obtained for the Yb 1.03 μm fluorescence in YbAlG : Er3+ revealed the presence of Er → Yb energy transfer as well in this sample. The existence of both Yb → Er and Er → Yb transfer is expected, due to the resonance between the 4I11/24I15/2 transition of Er and the 2F5/22F7/2 transition of Yb. The above results are explained in terms of a rate equation model in which transfer in both directions is treated in the following manner: Yb → Er transfer is considered to be much more probable than decay processes originating at the Yb 2F5/2 level; Er → Yb transfer is treated as much more probable than decay processes originating at the Er 4I11/2 level.  相似文献   

7.
The efficiency of erbium three-micron laser (laser transition 4I11/24I13/2) depends essentially on the ratio of the parameters of active energy transfer upconversion (ETU) from the laser levels. The parameters of both ETU processes can be obtained from the analysis of the shape of the kinetics of the 4I11/2 level in concentrated Er:YAG crystals, under short pulse pumping. Mathematical modeling is used to evaluate the sensitivity of the method and to estimate the errors which can be introduced by the inhomogeneous pumping and accidental impurities. It was found that the ratio of the parameters corresponding to the ETU from the laser levels is less sensitive to the pumping inhomogeneities than that corresponding to the lower laser level. A reduction of this ratio with increasing erbium concentration is observed.  相似文献   

8.

The luminescence and absorption properties of Ba(Y1−x Er x )2F8 (x=0.001, 0.01, 0.05, 0.1, 0.2 and 0.3) and the Er3+-ion decay kinetics of luminescent transitions from three initial laser states, the4S3/2,4F.9/2 and4I11/2 manifolds, were measured. The crystal-field splitting schemes for allJ-manifolds which are involved in (JJ′)-luminescence transitions and stimulated emission parameters of Er3+ -ions in BaY2F8 were determined. A comparison of laser powers and efficiencies of BaY2F8 and Y3Al5O12, Lu3Al5O12 and LiYF4 single crystals doped with Er3+-ions shows the similar performance of these materials.

  相似文献   

9.
The luminescence and absorption properties of Ba(Y1–x Er x )2F8 (x=0.001, 0.01, 0.05, 0.1, 0.2 and 0.3) and the Er3+-ion decay kinetics of luminescent transitions from three initial laser states, the4S3/2,4F.9/2 and4I11/2 manifolds, were measured. The crystal-field splitting schemes for allJ-manifolds which are involved in (J J)-luminescence transitions and stimulated emission parameters of Er3+ -ions in BaY2F8 were determined. A comparison of laser powers and efficiencies of BaY2F8 and Y3Al5O12, Lu3Al5O12 and LiYF4 single crystals doped with Er3+-ions shows the similar performance of these materials.  相似文献   

10.
Optical and electron paramagnetic resonance study have been carried out on BaY2F8 single crystals doped with Yb ions at 0.5 and 10 mol%. The crystals have been obtained using the Czochralski method modified for fluoride crystal growth. Optical transmission measurements in the range of 190-3200 nm and photoluminescence measurements were carried out at room temperature. Absorption spectra of BaY2F8 single crystals doped with Yb due to the 2F7/22F5/2 transitions have been observed in the 930-980 nm range. To analyze the possible presence of Yb2+ ions in the investigated crystals, irradiation with γ-quanta with a dose of 105 Gy have been performed. The observed photoluminescence bands show usual emission in IR and other one in VIS, being an effect of cooperative emission of Yb3+ ions and energy up-conversion transitions of photons from IR to UV-vis(visible) due to hoping process between energy levels of paired Yb3+ and Er3+, where Er3+ ions are unintentional dopants. The EPR spectra of BaY2F8:Yb 10 mol% consist of many overlapping lines. They have been analyzed in terms of spin monomers, pairs, and clusters. The angular dependence of the resonance lines positions have been studied also to find the location of coupled ytterbium ions in the crystal structure.  相似文献   

11.
The relevance of processes contributing to depletion of pump and upper laser levels has been assessed based on experimental data obtained during measurement of excited state absorption, steady state emission and dynamics of excited states as a function of excitation power and activator concentration. It has been concluded that the excited state absorption in YVO4: Nd and YVO4: Er is not significant except for that from the 4 I 11/2 level of Er3+. In these systems, the interionic processes are dominant. In particular, the reported decrease of the YVO4: Er laser slope efficiency when the Er3+ concentration increased from 0.5 to 1 at % is due mainly to the up-conversion by energy transfer from the pump level and upper laser level. Excited state absorption cannot contribute to depletion of excited states involved in the 3 F 4-3 H 6 laser operation near 1800 nm in the YVO4: Tm crystal. However, the heavy doping required to enhance the cross-relaxation process which feeds the upper laser level brings about the migration-accelerated energy transfer to energy sinks.  相似文献   

12.
The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.  相似文献   

13.
Er-doped Si-yttria-stabilized zirconia (YSZ) thin film samples were prepared by rf co-sputtering. Chemical composition of the samples was determined using energy-dispersive spectroscopy (EDS) and the structure of the films by X-ray diffraction (XRD). The samples were annealed to 700 °C. Photoluminescence (PL) measurements were performed for the visible and infrared. By exciting with the 488-nm-laser line the Er3+ emissions 2H11/24I15/2, 4S3/24I15/2, 4F9/24I15/2 and a narrow 4I13/24I15/2 emission were observed. The 4I11/24I15/2 emissions for the same excitation wavelength were weak. Excitation wavelength dependence of the 4I13/24I15/2 emissions indicated that the emissions were due to a combination of energy transfer from Si nanoparticles (np) to Er ions and energy transfer from defects in the matrix to the Er ions for excitations resonant with the energy levels of such defects. 4I13/24I15/2 emission decay measurements show two decaying populations of Er ions according to their locations with respect to other ions or any non-radiative defects. 4I11/24I15/2 emission dependence on 4I13/24I15/2 emission showed that the former was possibly due to a combination of downconversion from higher levels of the Er ions, energy transfer from Si nanoparticles and upconversion transfer processes. We concluded that Er-doped Si-YSZ is a promising material for photonic applications being easily broadband excited using low-pumping powers.  相似文献   

14.
We report the orange-to-blue and infrared-(IR)-to-blue wavelengths upconversion luminescence in Pr3+:BaY2F8 crystals. Mechanism of the orange light upconversion into blue 3P0 state emission was confirmed to be energy transfer between two Pr3+ ions in the 1D2 state. IR-to-blue upconversion has only been observed under two different color IR pumping. The first resonant step was the 3H41G4 ground state absorption transition, and the second resonant transition was the excited state absorption from the 1G4 to 1I6 and 3PJ levels. A comparison of the efficiency of the IR-to-blue upconversion in several praseodymium activated host is presented and discussed. A model of the IR pumped upconversion praseodymium blue laser is presented and the population inversion conditions are calculated.  相似文献   

15.
A series of new long-lasting phosphor Gd2O2S:xEr,Ti are prepared by the conventional high-temperature solid-state method and their luminescent properties are systematically investigated in this paper. The characteristic afterglow emission of Er, which is due to the transition of 4F9/24I15/2 and 4S3/24I15/2, is reported for the first time. XRD, photoluminescence, long-lasting phosphorescence and decay curves are used to characterize the synthesized phosphors. The possible energy transfer mechanism of Gd2O2S:xEr,Ti is also investigated.  相似文献   

16.
The possibilities of occupying high-lying 4f states of Pr3+ ions in the active BaY2F8:Yb3+,Pr3+ medium according to the photon avalanche and step-by-step sensitization mechanisms are compared. It is shown that the photon avalanche is unlikely to occur in the BaY2F8:Yb3+,Pr3+ crystal. The multiband luminescence spectra in the visible spectral range (white emission) under single- and multiwave pumping of BaY2F8:Yb3+,Pr3+ crystal by IR laser diodes are reported.  相似文献   

17.
We report on the frequency doubling of Q-switchedNd:YAG and Nd:YAlO3 lasers emitting at 946 and 930 nm, respectively (4F3/2 to 4I9/2 transition). The neodymium-doped laser host crystals were excited with a flashlamp-pumped Cr:LiSAF laser operating in a free-running mode. Blue-light pulses were obtained at both 473 nm (9 mJ, 25 ns FWHM) and 465 nm (4.4 mJ, 35 ns FWHM) by using a potassium niobate crystal as an extra-cavity frequency doubler. The second-harmonic generation conversion efficiencies reached 53% and 31%, respectively. Received: 23 June 1999 / Revised version: 8 August 1999 / Published online: 3 November 1999  相似文献   

18.
Ultraviolet fluorescence of Nd3+ ions induced by triphotonic excitation process was studied in Nd-doped LiYF4, LiLuF4 and BaY2F8 crystals using a technique of time-resolved spectroscopy. The observed ultraviolet luminescence was due to transitions between the bottom of 4f25d configuration and 4f3 states of Nd3+ ions. Narrow emission lines superposed to the broadband emissions were observed. A detailed analysis of luminescence spectrum revealed that the narrow emissions are due to parity and spin allowed radiative transitions from the Stark levels of 4K11/2(5d) state created by the electrostatic interaction between the 5d electron and the two electrons of the 4f2 configuration. The narrow emissions are related to the high spin state (S=3/2) which gives f-f characteristics to the f-d broadband emissions. The narrow emissions superposed to the wide emission correspond to 18%, 34% and 43% of the integrated broadband emission at 262 nm observed in LiYF4, LiLuF4 and BaY2F8 crystals, respectively. Although the 5d-4f2 interaction is observed to be weaker than 5d-crystal field interaction, it is stronger enough to select only the radiative transitions from 4f25d configuration to 4f3 states that preserves the total spin S=3/2.  相似文献   

19.
With the help of absorption and fluorescence spectra, the spectroscopic properties of Tm3+, Ho3+:YVO4 crystals have been investigated under different dopant concentrations. The absorption results show that the maximum absorption in the spectral range of currently available powerful laser diodes (LD) is at 796 nm, corresponding to the transition 3H63H4 of Tm3+ in the crystals. Upon the excitation with a LD at 808 nm, we have detected ten fluorescence bands in the spectral range spanning from visible to infrared. In visible region 4 upconversion bands have been observed centered at 475, 547, 660, and 701 nm. Discussions of the energy transfer processes suggest that cross relaxations and excited absorptions with the involvement of Tm3+ 3F4, 3H5 and Ho3+ 7I5 states are responsible for the four upconversion emissions. Comprising the relative integrated intersities of 2 μm (Ho3+: 5I75I8) and 1.8 μm (Tm3+: 3F_4→3H6) bands we have observed an efficient energy transfer from Tm3+ (3F4) to Ho3+ (5I7). Examination of the ratios of the intensity of 2 μm band to that of 1.8 μm band as a function of the ratios of Tm3+ concentration (cTm) to Ho3+ concentration (cHo) indicates that small concentration ratios (cTm/cHo) lead to high efficient energy transfers of Tm3+(3F4)→Ho3+(5I7).  相似文献   

20.
A series of Cr,Er:Gd3Ga5O12 crystals with high concentrations of Er3 + were grown by Czochralski method. The absorption spectra, the up-conversion, near infrared (NIR) and mid-infrared (Mid-IR) luminescence spectra as well as the luminescence decay curves of Er: 4I13/2 and 4I11/2 levels were measured at room temperature. The spectroscopic properties of Cr,Er:Gd3Ga5O12 crystals and Cr–Er energy transfer processes were investigated. The spectroscopy of the Er3 +:4I11/2  4I13/2 transition was centralized to discuss, and the important optical parameters including luminescence lifetimes and the Cr–Er energy transfer efficiency are presented. Based on the comprehensive spectral analyses, 0.6 at.%Cr/50 at.%Er:GGG crystal is preferred as candidate of potential xenon lamp pumped ~ 2.7 μm laser in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号