首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report the results of complex study of luminescence and dynamics of electronic excitations in K2Al2B2O7 (KABO) crystals obtained using low-temperature luminescence-optical vacuum ultraviolet spectroscopy with sub-nanosecond time resolution under selective photoexcitation with synchrotron radiation. The paper discusses the decay kinetics of photoluminescence (PL), the time-resolved PL emission spectra (1.2–6.2 eV), the time-resolved PL excitation spectra and the reflection spectra (3.7–21 eV) measured at 7 K. On the basis of the obtained results three absorption peaks at 4.7, 5.8 and 6.5 eV were detected and assigned to charge-transfer absorption from O2? to Fe3+ ions; the intrinsic PL band at 3.28 eV was revealed and attributed to radiative annihilation of self-trapped excitons, the defect luminescence bands at 2.68 and 3.54 eV were separated; the strong PL band at 1.72 eV was revealed and attributed to a radiative transition in Fe3+ ion.  相似文献   

2.
Beryllium has been implanted into both n- and p-type 6H–SiC with post-implantation annealing at 1600 °C. Photoluminescence (PL) measurements have been performed, and PL lines at 420.5, 431 nm, and a broad band at around 505 nm have been observed. The line at 420.5 nm is attributed to an intrinsic defect DII-center induced by beryllium implantation. The effects of excitation intensity and temperature during the PL experiments are investigated. Based on the excitation laser dependence PL result, the new doublet lines at around 431 nm are thought to be associated with beryllium related bound excitons. The broad band corresponding to the green luminescence at room temperature has been attributed to the recombination of free carriers to beryllium bound levels.  相似文献   

3.
La2/3Sr1/3MnO3 thin films are studied with temperature variable photoluminescence (PL) spectroscopy. Two emission peaks are assigned to the minority carriers related transition processes. The temperature independent 2.526 eV peak is attributed to the charge transfer type inter-band transition, while the redshifted doublet peak around 1.686 eV to the spin flip process. Band structures are obtained within the density functional theory, which show the consistent band gaps with the PL data. The temperature dependence of the intensity of PL emission suggests that these minority carrier processes are relevant to polaron formation.  相似文献   

4.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

5.
Zinc oxide (ZnO) thin films on R-plane sapphire substrates were grown by the sol–gel spin-coating method. The optical properties of the ZnO thin films were investigated using photoluminescence. In the UV range, the asymmetric near-band-edge emission was observed at 300 K, which consisted of two emissions at 3.338 and 3.279 eV. Eight peaks at 3.418, 3.402, 3.360, 3.288, 3.216, 3.145, 3.074, and 3.004 eV, which respectively correspond to the free exciton (FX), bound exciton, transverse optical (TO) phonon replica of FX recombination, and first-order longitudinal optical phonon replica of FX and the TO (1LO+TO), 2LO+TO, 3LO+TO, 4LO+TO, and 5LO+TO, were obtained at 12 K. From the temperature-dependent PL, it was found that the emission peaks at 3.338 and 3.279 eV corresponded to the FX and TO, respectively. The activation energy of the FX and TO emission peaks was found to be about 39.3 and 28.9 meV, respectively. The values of the fitting parameters of Varshni's empirical equation were α=4×10?3 eV/K and β=4.9×103 K, and the S factor of the ZnO thin films was 0.658. With increasing temperature, the exciton radiative lifetime of the FX and TO emissions increased. The temperature-dependent variation of the exciton radiative lifetime for the TO emission was slightly higher than that for the FX emission.  相似文献   

6.
Zn2SiO4:Mn green phosphor having comparable photoluminescence (PL) efficiency with commercial phosphor has been synthesized at 1000 °C using solid state reactions involving ZnO, silicic acid and manganese acetate. The water of crystallization attached to SiO2 in silicic acid whose dissociation at 1000 °C seem to promote the sintering efficiency of Zn2SiO4:Mn. Incremental ZnO addition and re-firing at 1000 °C promote the diffusion rate of ZnO and SiO2. The formation of a single crystalline phase of willemite structure in the samples was confirmed by powder XRD measurements. The phosphor exhibit an intense excitation band centered around 275 nm and a relatively weak excitation centered around 380 nm while the broad band green emission peaks at 524 nm. Other parameters studied include PL spectra, grain morphology, ZnO/SiO2 molar ratio, Mn concentration, co-dopant/flux and the effect of chemical forms of Mn dopant as well as silica on the PL efficiency.  相似文献   

7.
Undoped and vanadium-doped Zn2SiO4 particles embedded in silica host matrix were prepared by a simple solid-phase reaction after the incorporation of ZnO and ZnO:V nanoparticles, respectively, in silica monolith using the sol–gel method with supercritical drying of ethyl alcohol in two steps. After supercritical drying and annealing in the temperature range between 1423 and 1473 K in an air atmosphere, the photoluminescence (PL) measurements show a band centered at about 760 nm in the case of non-doped Zn2SiO4 which is attributed to energy transfer from Zn2SiO4 particles to NBOHs interface defects. In the case of vanadium doped Zn2SiO4, the PL reveals a band centered at about 540 nm attributed to the vanadium in the interfaces between Zn2SiO4 particles and SiO2 host matrix. Photoluminescence excitation (PLE) measurements show different origins of the emission bands. The PLE band (~240–350 nm) may be understood as an energy transfer process from O2? to V5+ which occurs intrinsically in the vanadyl group.  相似文献   

8.
A preliminary heat capacity study of Fe8 molecules as a function of applied magnetic field, temperature and measuring frequency is presented. The heat capacity versus temperature curve shows in zero field several peaks between 2 and 3 K. The anomalies shift to a lower temperature when a magnetic field is applied. With increasing field the peaks are smeared. No frequency dependence could be established in the measured range of ω =217–4440 Hz. We have also performed heat capacity measurements as a function of magnetic field at fixed temperature. Between 2 and 3 K a pattern of well developed peaks at discrete magnetic field values is observed. The pattern strongly changes in the small temperature range between 2.3 and 2.5 K.  相似文献   

9.
Effects of thermal annealing on the emission properties of type-II InAs quantum dots (QDs) covered by a thin GaAs1−xSbx layer are investigated by photoluminescence (PL) and time-resolved PL measurements. Apart from large blueshifts and a pronounced narrowing of the QD emission peak, the annealing induced alloy intermixing also leads to enhanced radiative recombination rates and reduced localized states in the GaAs1−xSbx layer. We find that the type-II QD structure can sustain thermal annealing up to 850 °C. In particular, we find that it is possible to manipulate between type-I and type-II recombinations in annealed QDs by using different excitation powers. We demonstrate that postgrowth thermal annealing can be used to tailor the band alignment, the wave function overlaps, and hence the recombination dynamics in the InAs/GaAs1−xSbx type-II QDs.  相似文献   

10.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

11.
Erbium doped silicon-rich silica offers broad band and very efficient excitation of erbium photoluminescence (PL) due to a sensitization effect attributed to silicon nanocrystals (Si-nc), which grow during thermal treatment. PL decay lifetime measurements of sensitised Er3+ ions are usually reported to be stretched or multi exponential, very different to those that are directly excited, which usually show a single exponential decay component.In this paper, we report on SiO2 thin films doped with Si-nc's and erbium. Time resolved PL measurements reveal two distinct 1.54 μm Er decay components; a fast microsecond component, and a relatively long lifetime component (10 ms). We also study the structural properties of these samples through TEM measurements, and reveal the formation of Er clusters. We propose that these Er clusters are responsible for the fast μs decay component, and we develop rate equation models that reproduce the experimental transient observations, and can explain some of the reported transient behaviour in previously published literature.  相似文献   

12.
Epitaxial films of CuGaSe2 were grown on (001)GaAs substrates by an MBE technique. A near-stoichiometric film with chemical compositions consistently varied from Cu- to Ga-rich was prepared by growing the film without the substrate rotation. A series of PL spectra was obtained by directing a focused laser beam point-by-point across the boundary separating the Cu- and Ga-rich regions. Distinct features of these spectra were noted. On the Cu-rich side, optical emissions peaked at 1.71, 1.67, 1.63, and 1.59 eV were observed in a PL spectrum. The peak at 1.71 eV was due to the emission of bound exciton, while the peak at 1.67 eV was caused by the free-to-bound transition. The other two peaks were identified to be the donor-to-acceptor emissions. Further annealing experiments performed in different environments suggested that the peaks at 1.67, 1.63, and 1.59 eV were associated with the optical transitions of CB→CuGa, Cui→CuGa, and Cui→VGa, respectively. On the Ga-rich side, a dominant donor-to-acceptor emission peaked at 1.62 eV was observed, which was determined to be the GaCu→VCu transition. The two defects with opposite charge states resulted in a highly compensated material with high resistivity.  相似文献   

13.
As grown ZnO:Si nanocomposites of different compositional ratios were fabricated by thermal evaporation techniques. These films were subjected to post-deposition annealing under high vacuum at a temperature of 250 °C for 90 min. The photoluminescence (PL) spectra of annealed samples have shown marked improvements both in terms of intensity and broadening. Structural and Raman analyses show formation of a Zn–Si–O shell around ZnO nanoclusters wherein on heating Zn2SiO4 compound forms resulting in huge UV, orange and red peaks at 310, 570 and 640 nm in PL. The new emissions due to Zn2SiO4 completes white light spectrum. The study not only suggests that 1:2 ratio is the best suited for material manipulation but also shows process at the interface of ZnO nanoclusters and silicon matrix leads to new PL emissions.  相似文献   

14.
Temperature-dependent photoluminescence (PL) spectroscopy of CuInS2 core and CuInS2/ZnS core–shell quantum dots (QDs) was studied for understanding the influence of a ZnS shell on the PL mechanism. The PL quantum yield and lifetime of CuInS2 core QDs were significantly enhanced after the QD surface was coated with the ZnS shell. The temperature dependences of the PL energy, linewidth, and intensity for the core and core–shell QDs were studied in the temperature range from 92 to 287 K. The temperature-dependent shifts of 98 meV and 35 meV for the PL energies of the QDs were much larger than those of the excitons in their bulk semiconductors. It was surprisingly found that the core and core–shell QDs exhibited a similar temperature dependence of the PL intensity. The PL in the CuInS2/ZnS core–shell QDs was suggested to originate from recombination of many kinds of defect-related emission centers in the interior of the cores.  相似文献   

15.
《Current Applied Physics》2010,10(4):1017-1021
ZnSe nanowires have been synthesized by thermal evaporation of ZnSe powders on gold-coated Al2O3(0 0 0 1) substrates and then sheathed with TiO2 by sputtering. Our results show that sheathing Zn nanowires with thin TiO2 layers can significantly enhance the photoluminescence (PL) emission intensity. XPS analysis results suggest that the PL enhancement is attributed to increases in the concentrations of deep levels such as oxygen and titanium interstitials as well as the density of interface states. The PL emission of ZnSe nanowires is also enhanced by thermal annealing. Annealing in an argon atmosphere is more efficient in enhancing the PL emission than annealing in an oxygen atmosphere.  相似文献   

16.
Photoluminescence (PL) properties of Er-doped β-FeSi2 (β-FeSi2:Er) and Er-doped Si (Si:Er) grown by ion implantation were investigated. In PL measurements at 4.2 K, the β-FeSi2:Er showed the 1.54 μm PL due to the intra-4f shell transition of 4I13/24I15/2 in Er3+ ions without a defect-related PL observed in Si:Er. In the dependence of the PL intensity on excitation photon flux density, the obtained optical excitation cross-section σ in β-FeSi2:Er (σ=7×10−17 cm2) is smaller than that in Si:Er (σ=1×10-15 cm2). In the time-resolved PL and the temperature dependence of the PL intensity, the 1.54 μm PL in β-FeSi2:Er showed a longer lifetime and larger activation energies for non-radiative recombination (NR) processes than Si:Er. These results revealed that NR centers induced by ion implantation damage were suppressed in β-FeSi2:Er, but the energy back transfer from Er3+ to β-FeSi2 was larger than Si:Er.  相似文献   

17.
Terbium activated Al2O3 phosphors were synthesized by combustion technique using hydrazine as a reductive non-carbonaceous fuel. X-ray diffraction (XRD) patterns of the samples were recorded to confirm the formation of the sample. Scanning electron microscope (SEM) images were taken to study the surface morphology of the sample. The photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties of the γ-ray irradiated samples were studied. ML was excited impulsively by dropping a piston on the sample. In ML glow curves one peak with a shoulder was observed. ML intensity increases with activator concentration. Optimum ML was observed for the sample having 0.5 mol% of Tb ions. In the TL glow curve two distinct peaks, one around 222 °C and another around 280 °C, were observed for the samples having 0.5 mol% of activator concentration. In the PL spectra the 5D47F5 line at 544 nm in the green region is observed, which is the strongest in Al2O3 system. It is suggested that de-trapping of trapped charge carriers followed by recombination is responsible for ML and TL in this system.  相似文献   

18.
LiCaAlF6 (LiCAF) crystals doped with two different ions (europium and lead) have been investigated as potential new dosimetric materials. The stability of thermally stimulated luminescence (TSL) glow peaks in LiCAF:Eu was evaluated by means of the initial rise technique. The decay times at room temperature of the traps related to the dosimetric glow peaks were found to range between 40 and 2 × 104 years confirming the good dosimetric characteristics of this crystal. The glow curve of LiCAF:Pb is dominated by a peak at approximately 300 °C emitting in the UV region (3P0,11S0 transition of Pb2+) superimposed to a very broad structure at lower temperature (20–200 °C) featuring recombination at an intrinsic defect centre. The anomalous behavior of the low temperature structure during thermal cleaning procedures prevented any reliable numerical analysis of the TSL glow peak at 300 °C.  相似文献   

19.
This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu3+ (1–5 mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) light and exhibited strong red emission around 613 nm, which was attributed to the Eu3+ (5D0  7F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu3+ ions, electron–phonon coupling and Eu3+–Eu3+ interaction. The Judd–Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes.  相似文献   

20.
This paper reports on the thermo (TL), iono (IL) and photoluminescence (PL) properties of nanocrystalline CaSiO3:Eu3+ (1–5 mol %) bombarded with 100 MeV Si7+ ions for the first time. The effect of different dopant concentrations and influence of ion fluence has been discussed. The characteristic emission peaks 5D07FJ (J=0, 1, 2, 3, 4) of Eu3+ ions was recorded in both PL (1×1011–1×1013 ions cm?2) and IL (4.16×1012–6.77×1012 ions cm?2) spectra. It is observed that PL intensity increases with ion fluence, whereas in IL the peaks intensity increases up to fluence 5.20×1012 ions cm?2, then it decreases. A well resolved TL glow peak at ~304 °C was recorded in all the ion bombarded samples at a warming rate of 5 °C s?1. The TL intensity is found to be maximum at 5 mol% Eu3+ concentration. Further, TL intensity increases sub linearly with shifting of glow peak towards lower temperature with ion fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号