首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A novel Ce3+/Eu2+ co-activated LiSr4(BO3)3 phosphor has been synthesized by traditional solid-state reaction. The samples could display varied color emission from blue towards white and ultimately to yellow under the excitation of ultraviolet (UV) light with the appropriate adjustment of the relative proportion of Ce3+/Eu2+. The resonance-type energy transfer mechanism from Ce3+ to Eu2+ in LiSr4(BO3)3:Ce3+, Eu2+ phosphors is dominant by electric dipole–dipole interaction, and the critical distance is calculated to be about 29.14 Å by the spectra overlap method. White light was observed from LiSr4(BO3)3:mCe3+, nEu2+ phosphors with chromaticity coordinates (0.34, 0.30) upon 350 nm excitation. The LiSr4(BO3)3:Ce3+, Eu2+ phosphor has potential applications as an UV radiation-converting phosphor for white light-emitting diodes.  相似文献   

2.
Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D47F5 transition of Tb3+, and at 430–470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.  相似文献   

3.
A new red-emitting phosphor Ca9Lu(PO4)7:Ce3+, Mn2+ has been synthesized by solid-state reaction, and its luminescence properties have been investigated. The broad red emission peaked at 645 nm of Mn2+ is greatly enhanced by the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. The energy transfer was demonstrated to belong to a resonant type via a dipole–quadrupole mechanism. The critical distance for Ce3+→Mn2+ energy transfer was calculated to be 15.04 Å by concentration quenching method. Preliminary results indicate that the phosphor might be a promising red phosphor for UV-based white LEDs.  相似文献   

4.
Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The photoluminescent properties of Ce3+ and Tb3+ co-doped BaAl2B2O7 phosphors were investigated by using the photoluminescence emission and excitation spectra. Under the excitation of near ultraviolet (n-UV) light, BaAl2B2O7:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the f–d transition of Ce3+ ions and green emission bands corresponding to the f–f transition of Tb3+ ions, respectively. Effective energy transfer occurred from Ce3+ to Tb3+ in BaAl2B2O7 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 71%. Furthermore, the concentration quenching and critical distance of BaAl2B2O7:Ce3+,Tb3+ phosphors were also discussed. The energy transfer from Ce3+ to Tb3+ in BaAl2B2O7 host was demonstrated to be resonant type via a dipole–dipole interaction mechanism with the energy transfer critical distance of 16.13 Å.  相似文献   

5.
A novel white-light emitting CaAl2SiO6: Ce3+, Tb3+ phosphor has been prepared by a sol–gel method. X-ray diffractometry and spectrofluorometry were used to characterize structural and optical properties of the samples. The results indicate that the crystal structure of the phosphor is a single phase of CaAl2SiO6. The excitation band of the phosphor covers a wide region from 240 nm to 380 nm. CaAl2SiO6: Ce3+, Tb3+ phosphors show four emission bands: one at 400 nm for Ce3+ and three at 487 nm, 543 nm and 585 nm for Tb3+. With appropriate tuning of Tb3+ content, white light with different hues can be achieved under UV radiation. The energy transfer mechanism from Ce3+ to Tb3+ in CaAl2SiO6 host was demonstrated to be dipole–dipole interaction.  相似文献   

6.
Novel blue/green NaSrPO4 phosphors co-doped with Eu2+ and Tb3+ were synthesized by a conventional solid-state reaction. Their luminescent properties were characterized by using powder X-ray diffraction, photoluminescence excitation and emission spectra, lifetime, and temperature dependent emission spectra, respectively. The NaSrPO4:Eu2+,Tb3+,Na+ phosphor showed an intense broad excitation band between 250 and 430 nm, which was in agreement with the near-UV chip (350–420 nm), and it exhibited two dominating emission bands at 445 and 545 nm, corresponding to the allowed 4f65d1→4f7(8S7/2) transition of Eu2+ ion and the 5D47F5 transition of Tb3+ ion, respectively. The emission intensity and lifetime of Eu2+ ion decreased with the increasing concentration of Tb3+ ion, which strongly indicated that an effective energy transfer occurred from Eu2+ to Tb3+ in NaSrPO4 host. The principle of the energy transfer should be the combined effect of the non-radiative resonant energy transfer and the phonon-assisted non-radiative process.  相似文献   

7.
The emission spectrum of neat Sr3Tb(PO4)3 upon excitation at 337 nm in the levels above 5D3 is dominated by 5D4 emission and no significant emission from 5D3 is observed due to efficient cross relaxation involving the Tb3+ levels. On the other hand, the emission spectrum of the same host containing 10 mol% Eu3+ upon excitation at the same wavelength (in the Tb3+ levels) is dominated by strong emission bands from the 5D0 level of Eu3+. This clearly indicates that Tb3+→Eu3+ energy transfer is present. The excitation spectrum of the Eu3+ 5D0 emission is dominated by Tb3+ bands extending in the UV region.The presence of 10 mol% Eu3+ in Sr3Tb(PO4)3 very strongly shortens the 5D4 decay time. The decay curve is not far from exponential, indicating that the energy transfer to Eu3+ is accompanied by fast energy migration. The transfer regimes are identified and the donor–donor and donor–acceptor transfer microparameters are quantified under the assumption of electric dipole–electric dipole interactions.  相似文献   

8.
Ke Li  Changyu Shen 《Optik》2012,123(7):621-623
Nano-YAG:Ce3+ and YAG:Ce3+,Gd3+ phosphors were synthesized by glycothermal method. The X-ray diffraction (XRD) measurements showed that the samples can be well-crystallized at 600 °C. The transition electron microscope (TEM) showed that the particles have sizes mostly in the range between 35 and 100 nm. The YAG:Ce nano-phosphor had a wide emission band ranging from blue to yellow peaking at 532 nm, due to the transition from the lowest 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. Red-shift of emission peak wavelength from 532 nm to 568 nm has been achieved as doping Gd3+ ions into the YAG:Ce3+ to substitute some Y3+ ions. White LEDs were fabricated by combining GaN (460 nm) chip with the YAG:Ce3+ and YAG:Ce3+,Gd3+. Color rendering index of the white LED as a function of the ratios of theses two kinds of phosphors was studied. As the ratio of YAG:Ce3+,Gd3+ phosphor increased, the color rendering index of the LED improved significantly under the forward bias of 20 mA. As the ratio of YAG:Ce3+ and YAG:Ce3+,Gd3+ was 11:9, the white LED had a color rendering index, CIE chromaticity coordinates and color temperature Tc of 85, (0.3116, 0.3202) and 6564 K, respectively.  相似文献   

9.
A Eu3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating a Eu3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction for 30 min at 900 °C. The excitation peak wavelength of the resulting phosphor was 379 nm and the emission peak wavelengths were at 542 nm, attributed to the 5D47F5 transition of Tb3+, and at 613 mm, attributed to the 5D07F1 transition of Eu3+. The intensity ratio of the two peaks could be freely controlled by varying the Eu/Tb atomic ratio of the Eu3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from green to red. It was clarified that electron transfer from Tb3+ to Eu3+ is occurring.  相似文献   

10.
Blue and green double emitting phosphor, Ce3+ and Tb3+ co-doped NaSr4(BO3)3, was synthesized in a weak reducing atmosphere by a conventional high temperature solid-state reaction technique. For comparison, Ce3+ or Tb3+ singly doped NaSr4(BO3)3 was also prepared. The emission and excitation spectra of all samples have been investigated. NaSr4(BO3)3:Tb3+ excitation includes a strong absorption at about 240 nm and some weak sharp lines in near-ultraviolet (n-UV) spectral region. The excitation of Ce3+ and Tb3+ co-doped NaSr4(BO3)3 shows a strong broad band absorption in the n-UV region from the contribution of Ce3+, which makes it suitable for excitation by a n-UV LED chip. The emission of NaSr4(BO3)3:Ce3+,Tb3+ consists of a blue emission band from Ce3+ and a green emission from Tb3+ under the excitation of n-UV light. Energy transfer between Ce3+ and Tb3+ is also discussed, and the relative intensity of blue emission and green emission could be tuned by adjusting the concentration of Ce3+ and Tb3+. The phosphor NaSr4(BO3)3:Ce3+,Tb3+ could be considered as a double emission phosphor for n-UV excited white light-emitting diodes.  相似文献   

11.
A piece-shaped phosphor Ca2BO3Cl: Eu2+ was synthesized by solid-state reaction method. This phosphor exhibited wide absorption in ultra-violet and visible range, and bright yellow emission band centering at 570 nm. The concentration quenching mechanism was verified to be a dipole–dipole interaction, and its critical transfer distance was about 17 Å by both calculated crystal structural method and experimental spectral method. This phosphor has a good thermal stability with a quenching temperature (T1/2) of 200 °C. Yellow and white LEDs were fabricated with this phosphor and near UV chips, and the yellow LED has a high color purity of 97.0% and promising current tolerant property, while the white LED shows a luminous efficiency of 11.68 lm/W.  相似文献   

12.
Al2O3:Tb3+ green phosphors were synthesized via a microwave solvothermal and thermal decomposition route, and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence (PL) spectra, and decay curves. XRD results indicate that Tb3+ doped samples are γ-Al2O3 after being calcined at 773 K. SEM results show that the particles of Al2O3:Tb3+ are hierarchically nanostructured microspheres assembled from nanosheets. The PL spectra indicate that the 5D47F5 (545 nm) electric dipole transition is the most intensive when excited at 235 nm. It is shown that 0.7 mol% of doping concentration of Tb3+ ions in γ-Al2O3:Tb3+ is optimum. According to Dexter's theory, the critical distance between Tb3+ ions for energy transfer was determined to be 18.4 Å. It is found that the curve followed the single-exponential decay. The excellent chromaticity coordinates of Al2O3:Tb3+ phosphors, as defined by the International Commission on Illumination (CIE), indicate that it is a good candidate for use in light display systems and optoelectronic devices.  相似文献   

13.
Sr3MgSi2O8:Ce3+, Tb3+ phosphor samples were prepared using a solid-state reaction technique, and the photoluminescence properties and energy transfer were investigated. Effective energy transfer occurred in Ce3+/Tb3+ co-doped Sr3MgSi2O8 phosphors. Co-doping of Ce3+ was found to enhance the emission intensity of Tb3+ to a certain extent by transferring energy to Tb3+. The Ce3+/Tb3+ energy transfer was thoroughly investigated through its emission/excitation spectra and photoluminescence decay behavior. The color emitted by Sr3MgSi2O8:Ce3+, Tb3+ phosphors varied from blue to green and can be controlled by altering the concentration ratio of Ce3+ to Tb3+. These results indicate that Sr3MgSi2O8:Ce3+, Tb3+ may be useful as a green-emitting phosphor for ultraviolet whitelight-emitting diodes.  相似文献   

14.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

15.
Novel green-emitting Ba2Y(BO3)2Cl:Ce3+,Tb3+ phosphors were synthesized by a solid-state method. X-ray diffraction and photoluminescence spectra were utilized to characterize the structures and luminescence properties of the as-synthesized phosphors, respectively. Ba2Y(BO3)2Cl:Ce3+,Tb3+ phosphors exhibit blue and green emission bands under the excitation of near-ultraviolet light. An asymmetric blue emission originates from the Ce3+ ion, whereas the green emission originates from the Tb3+ ion. A spectral overlap is found between the emission band of the Ce3+ ion and the excitation band of the Tb3+ ion, which supports the occurrence of the energy transfer from the Ce3+ ion to the Tb3+ ion. Meanwhile, the energy transfer is thoroughly investigated by their photoluminescence decay behaviors. The energy-transfer efficiency from the Ce3+ ion to the Tb3+ ion is also calculated, and a possible mechanism is proposed.  相似文献   

16.
Structural and spectroscopic characterizations of the Ce3+/Tb3+(Mn2+) solely and Ce3+–Tb3+(Mn2+) doubly doped phosphate compound Ca9ZnLi(PO4)7 with β-Ca3(PO4)2 structure have been performed by powder X-ray diffraction and photoluminescence spectra measurements. The weak green emission from Tb3+ and red emission from Mn2+ are significantly enhanced by introduction of sensitizer Ce3+ ions due to an efficient resonant-type energy transfer from Ce3+ to activators Tb3+ or Mn2+. The energy transfer efficiency and the mechanism have been estimated based on spectroscopic data. Meanwhile, the critical distances for energy transfer between the Ce3+ and Tb3+ or Mn2+ ions are also calculated by the method of spectral overlapping.  相似文献   

17.
The alkaline phosphate based LiNa3P2O7:Tb3+ phosphors are prepared by solid state reaction method. X-ray diffraction (XRD) analysis shows that all the powders possess orthorhombic structure. Fourier transform infrared (FTIR) spectroscopy studies suggest that the phosphor belong to the diphosphate family. The morphology of the phosphors is identified by scanning electron microscopy (SEM). Upon 378 nm excitation, the LiNa3P2O7:Tb3+ phosphors shown emission bands at 482, 545, 588 and 620 nm corresponding to the transitions 5D47F6, 5D47F5, 5D47F4 and 5D47F3, respectively. The optimized concentration of Tb3+ in LiNa3P2O7 phosphor is found to be 9 mol%. The concentration quenching mechanism was proved to be the exchange interaction between two nearest Tb3+ ions with the critical distance (Rc) of 1.18 nm. The Commission International de l'Eclairage (CIE) coordinates evidence that the phosphors emit in the green light region. Thermoluminescence properties of the prepared phosphors are studied by pre-irradiating the powders with different doses of UV irradiation. The kinetic parameters of TL glow curves are calculated using Chen's peak shape method.  相似文献   

18.
New sodium strontium rare-earth orthophosphates with general formula NaxSr3?2xLnx (PO4)2 (Ln = La, Nd, Gd) have been prepared and characterized. They seem to be of Sr3 (PO4)2 structural type. In NaSrLa1?x?yCexTby (PO4)2, a new green phosphor absorbing in the UV region, high yield results from a Ce3+ → Tb3+ energy transfer.  相似文献   

19.
Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipole-dipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.  相似文献   

20.
The YAG phosphors co-doped with Ce3+-Nd3+ ions by varying concentration of Nd3+ ion from 1 mol% to 15 mol% were successfully synthesized by conventional solid state reaction method. The phosphors were characterized by powder X-ray powder diffraction (XRD) and surface morphology was studied by scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied in near infra red (NIR) and ultra violet visible (UV–VIS) region. The synthesized phosphors can convert a blue region photon (453 nm) into photons of NIR region (1063 nm). The energy transfer (ET) process was studied by time decay curve and PL spectra. The theoretical value of energy transfer efficiency (ETE) was calculated from time decay luminescence measurement and the maximum efficiency approached up to 82.23%. Hence this phosphor could be prime candidate as a downshifting (DS) luminescent convertor (phosphor) in front of crystalline silicon solar cell (c-Si) panels to reduce thermalization loss in the solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号