首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
The effective elastic properties of periodic fibre-reinforced media with complex microstructure are determined by the method of asymptotic homogenization via a novel solution to the cell problem. The solution scheme is ideally suited to materials with many fibres in the periodic cell. In this first part of the paper we discuss the theory for the most general situation—N arbitrarily anisotropic fibres within the periodic cell. For ease of exposition we then restrict attention to isotropic phases which results in a monoclinic composite material with 13 effective moduli and expressions for each of these are determined. In the second part of this paper we shall discuss results for a variety of specific microstructures.  相似文献   

2.
Andrea Bacigalupo 《Meccanica》2014,49(6):1407-1425
In this paper a second-order homogenization approach for periodic material is derived from an appropriate representation of the down-scaling that correlates the micro-displacement field to the macro-displacement field and the macro-strain tensors involving unknown perturbation functions. These functions take into account of the effects of the heterogeneities and are obtained by the solution of properly defined recursive cell problems. Moreover, the perturbation functions and therefore the micro-displacement fields result to be sufficiently regular to guarantee the anti-periodicity of the traction on the periodic unit cell. A generalization of the macro-homogeneity condition is obtained through an asymptotic expansion of the mean strain energy at the micro-scale in terms of the microstructural characteristic size ?; the obtained overall elastic moduli result to be not affected by the choice of periodic cell. The coupling between the macro- and micro-stress tensor in the periodic cell is deduced from an application of the generalised macro-homogeneity condition applied to a representative portion of the heterogeneous material (cluster of periodic cell). The correlation between the proposed asymptotic homogenization approach and the computational second-order homogenization methods (which are based on the so called quadratic ansätze) is obtained through an approximation of the macro-displacement field based on a second-order Taylor expansion. The form of the overall elastic moduli obtained through the two homogenization approaches, here proposed, is analyzed and the differences are highlighted. An evaluation of the developed method in comparison with other recently proposed in literature is carried out in the example where a three-phase orthotropic material is considered. The characteristic lengths of the second-order equivalent continuum are obtained by both the asymptotic and the computational procedures here analyzed. The reliability of the proposed approach is evaluated for the case of shear and extensional deformation of the considered two-dimensional infinite elastic medium subjected to periodic body forces; the results from the second-order model are compared with those of the heterogeneous continuum.  相似文献   

3.
A complete analytical solution has been obtained of the elasticity problem for a plane containing periodically distributed, partially debonded circular inclusions, regarded as the representative unit cell model of fibrous composite with interface damage. The displacement solution is written in terms of periodic complex potentials and extends the approach recently developed by Kushch et al. (2010) to the cell type models. By analytical averaging the local strain and stress fields, the exact formulas for the effective transverse elastic moduli have been derived. A series of the test problems have been solved to check an accuracy and numerical efficiency of the method. An effect of interface crack density on the effective elastic moduli of periodic and random structure FRC with interface damage has been evaluated. The developed approach provides a detailed analysis of the progressive debonding phenomenon including the interface cracks cluster formation, overall stiffness reduction and damage-induced anisotropy of the effective elastic moduli of composite.  相似文献   

4.
The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents’ elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite’s interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents’ elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies (Hill’s condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young’s and shear moduli) and Poisson’s ratio at increasing (up to 100 %) inclusion’s volume fraction, thus providing a proxy for the design of artificial elastic composites.  相似文献   

5.
This paper reports on recent developments in the field of direct methods, in particular shakedown analysis (SA) from theoretical and numerical points of view. Emphasis is placed on problems connected with the failure of fibre-reinforced periodic composites under variable loads where special attention is paid to the problem of interface debonding between fibre and matrix materials. The approach is based on a local SA in a representative volume element of the composite and the use of averaging techniques to study the influence of each component (matrix, fibre and interface) on the macroscopic response of such composite. For numerical applications, the interior-point difference-of-convex-functions algorithm (IPDCA) is proposed as an efficient method for solving large-scale problems.  相似文献   

6.
基于复变函数理论和边界配点法,探索了功能梯度界面相在周期均匀分布纤维增强复合材料反平面剪切问题中所起的作用。由于纤维在复合材料基体中的周期分布是均匀的,将其简化成含一功能梯度界面相夹杂的方形单胞。采用分层均匀化方法,将功能梯度界面相离散成K层界面层。当K足够大时,每个界面层可视为匀质材料,同时计算得到的复合材料宏观性能趋于定值。根据单胞内的基体、界面相和夹杂的几何外形特点,分别给出复势函数的级数形式,这些复势函数在各组分的相邻界面应满足连续性条件,在单胞的外边界应满足周期性边界条件和远场加载条件,从而确定复势函数中的待定系数,进而根据平均场理论确定复合材料有效模量。主要探讨了夹杂体积分数、各组分模量、功能梯度界面相的模量渐变形式等因素对纤维增强复合材料性能的影响。结果表明:不管基体模量相对于夹杂模量是大还是小,都有对应的界面相模量渐变形式可使夹杂周围的等效应力集中系数减小;另外还发现仅当夹杂模量较大时,功能梯度界面相模量的变化方式对复合材料有效模量产生不可忽视的影响。  相似文献   

7.
8.
A simplified kinematic procedure at a cell level is proposed to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid-plastic interfaces with friction, representing mortar joints. The herringbone pattern is geometrically described and the internal law of composition of the periodic cell is defined.A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in-plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume (REV) and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively.To assess elastic results, a standard FEM homogenization is also performed and a sensitivity analysis regarding two different orientations of the pattern, the thickness of the mortar joints and the ratio between block and mortar Young moduli is conducted. In this way, the reliability of the numerical model is critically evaluated under service loads.When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond orientation, (2) masonry texture and (3) mechanical properties adopted for joints.At a structural level, a FE homogenized limit analysis is performed on a masonry dome built in herringbone bond. In order to assess limit analysis results, additional non-linear FE analyses are performed, including a full 3D numerical expensive heterogeneous approach and models where masonry is substituted with an equivalent macroscopic material with orthotropic behavior and possible softening. Reliable predictions of collapse loads and failure mechanisms are obtained, meaning that the approach proposed may be used by practitioners for a fast evaluation of the effectiveness of herringbone bond orientation.  相似文献   

9.
The stress field in a periodically layered composite with an embedded crack oriented in the normal direction to the layering and subjected to a tensile far-field loading is obtained based on the continuum equations of elasticity. This geometry models the 2D problem of fiber reinforced materials with a transverse crack. The analysis is based on the combination of the representative cell method and the higher-order theory. The representative cell method is employed for the construction of Green’s functions for the displacements jumps along the crack line. The problem of the infinite domain is reduced, in conjunction with the discrete Fourier transform, to a finite domain (representative cell) on which the Born–von Karman type boundary conditions are applied. In the framework of the higher-order theory, the transformed elastic field is determined by a second-order expansion of the displacement vector in terms of local coordinates, in conjunction with the equilibrium equations and these boundary conditions. The accuracy of the proposed approach is verified by a comparison with the analytical solution for a crack embedded in a homogeneous plane.Results show the effects of crack lengths, fiber volume fractions, ratios of fiber to matrix Young’s moduli and matrix Poisson’s ratio on the resulting elastic field at various locations of interest. Comparisons with the predictions obtained from the shear lag theory are presented.  相似文献   

10.
We propose an asymptotic approach for evaluating effective elastic properties of two-components periodic composite materials with fibrous inclusions. We start with a nontrivial expansion of the input elastic boundary value problem by ratios of elastic constants. This allows to simplify the governing equations to forms analogous to the transport problem. Then we apply an asymptotic homogenization method, coming from the original problem on a multi-connected domain to a so called cell problem, defined on a characterizing unit cell of the composite. If the inclusions' volume fraction tends to zero, the cell problem is solved by means of a boundary perturbation approach. When on the contrary the inclusions tend to touch each other we use an asymptotic expansion by non-dimensional distance between two neighbouring inclusions. Finally, the obtained “limiting” solutions are matched via two-point Padé approximants. As the results, we derive uniform analytical representations for effective elastic properties. Also local distributions of physical fields may be calculated. In some partial cases the proposed approach gives a possibility to establish a direct analogy between evaluations of effective elastic moduli and transport coefficients. As illustrative examples we consider transversally-orthotropic composite materials with fibres of square cross section and with square checkerboard structure. The obtained results are in good agreement with data of other authors.  相似文献   

11.
??????о?????????????Ч?????   总被引:2,自引:0,他引:2  
考虑共面载荷作用时薄壁蜂窝铝孔壁的弯曲、伸缩和剪切变形,基于Timoshenko粱理论精 确推导出了其共面弹性模量的计算公式,并利用壳单元设计了利用蜂窝铝特征单元来求共异 面弹性模量的有限元方法. 对厂家提供的两种蜂窝样品分别利用理论和有限元法进行了计算, 计算结果和实验数据相吻合,证明理论公式和有限元法的正确性. 最后就结构参数对蜂窝铝 各弹性模量相关材料效率的影响规律进行了分析.  相似文献   

12.
The present work deals with the modeling of 1–3 periodic composites made of piezoceramic (PZT) fibers embedded in a soft non-piezoelectric matrix (polymer). We especially focus on predicting the effective coefficients of periodic transversely isotropic piezoelectric fiber composites using representative volume element method (unit cell method). In this paper the focus is on square arrangements of cylindrical fibers in the composite. Two ways for calculating the effective coefficients are presented, an analytical and a numerical approach. The analytical solution is based on the asymptotic homogenization method (AHM) and for the numerical approach the finite element method (FEM) is used. Special attention is given on definition of appropriate boundary conditions for the unit cell to ensure periodicity. With the two introduced methods the effective coefficients were calculated for different fiber volume fractions. Finally the results are compared and discussed.  相似文献   

13.
14.
15.
Plastic size effect analysis of lamellar composites consisting of elastic and elastic-plastic layers is performed using a discrete dislocation plasticity approach, which is based on applying periodic homogenization to the superposition method for discrete dislocation plasticity. In this approach, the decomposition of displacements into macro and perturbed components circumvents the calculation of superposing displacement fields induced by dislocations in an infinitely homogeneous medium, resulting in two periodic boundary value problems specialized for the analysis of representative volume elements. The present approach is verified by analyzing a model lamellar composite that includes edge dislocations fixed at interfaces. The plastic size effects due to dislocation pile-ups at interfaces are also analyzed. The analysis shows that, strain hardening in elastic-plastic layers arises depending on two factors, namely the thickness and stiffness of elastic layers; and the gap between slip planes in adjacent elastic-plastic layers. In the case where the thickness of elastic layers is several dozen nm, strain hardening in elastic-plastic layers is restrained as the gap of the slip planes decreases. This particular effect is attributed to the long range stress due to pile-ups in adjacent elastic-plastic layers.  相似文献   

16.
A new technique is presented for evaluating the effective properties of linearly elastic, multi-phase unidirectional composites. Various effects on the fiber/matrix interfaces (perfect bond, homogeneously imperfect interfaces, uniform interphase layers) are allowed. The analysis of nano-composite materials based on the Gurtin and Murdoch model of material surface is also included. The basic idea of the approach is to construct a circular inhomogeneity in an infinite plane whose effects on the displacements and stresses at distant points are the same as those of a finite cluster of inhomogeneities (fibers of circular cross-section) arranged in a pattern representative of the composite material in question. The elastic properties of the equivalent inhomogeneity then define the effective elastic properties of the material. The volume ratio of the composite material is found after the size of the equivalent circular inhomogeneity is defined in the course of the solution procedure. This procedure is based on a semi-analytical solution of a problem of an infinite plane containing a cluster of non-overlapping circular inhomogeneities subjected to loading at infinity. The method works equally well for periodic and random composites and – importantly – eliminates the necessity for averaging either stresses or strains. New results for nano-composite materials are presented.  相似文献   

17.
A representative volume element (RVE) is related to the domain size of a microstructure providing a “good” statistical representation of typical material properties. The size of an RVE for the class of quasi-brittle random heterogeneous materials under dynamic loading is one of the major questions to be answered in this paper. A new statistical strategy is thus proposed for the RVE size determination. The microstructure illustrating the methodology of the RVE size determination is a metal matrix composite with randomly distributed aligned brittle inclusions: the hydrided Zircaloy constituting nuclear claddings. For a given volume fraction of inclusions, the periodic RVE size is found in the case of overall elastic properties and of overall fracture energy. In the latter case, the term “representative” is discussed since the fracture tends to localize. A correlation factor between the “elastic” RVE and the “fracture” RVE is discussed.  相似文献   

18.
An explicit unified form of boundary conditions for a periodic representative volume element (RVE) is presented which satisfies the periodicity conditions, and is suitable for any combination of multiaxial loads. Starting from a simple 2-D example, we demonstrate that the “homogeneous boundary conditions” are not only over-constrained but they may also violate the boundary traction periodicity conditions. Subsequently, the proposed method is applied to: (a) the simultaneous prediction of nine elastic constants of a unidirectional laminate by applying multiaxial loads to a cubic unit cell model; (b) the prediction of in-plane elastic moduli for [±θ]n angle-ply laminates. To facilitate the analysis, a meso/micro rhombohedral RVE model has been developed for the [±θ]n angle-ply laminates. The results obtained are in good agreement with the available theoretical and experimental results.  相似文献   

19.
This paper presents a closed-form expression for the homogenized longitudinal shear moduli of a linear elastic composite material reinforced by long, parallel, radially-graded circular fibres with a periodic arrangement. An imperfect linear elastic fibre-matrix interface is allowed. The asymptotic homogenization method is adopted, and the relevant cell problem is addressed. Periodicity is enforced by resorting to the theory of Weierstrass elliptic functions. The equilibrium equation in the fibre domain is solved in closed form by applying the theory of hypergeometric functions, for new wide classes of grading profiles defined in terms of special functions. The effectiveness of the present analytical procedure is proved by convergence analysis and comparison with finite element solutions. A parametric analysis investigating the influence of microstructural and material features on the effective moduli is presented. The feasibility of mitigating the shear stress concentration in the composite by tuning the fibre grading profile is shown.  相似文献   

20.
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the “exact” solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号