首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

2.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

3.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

4.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

5.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

6.
A new method for describing the rheological properties of reactive polymer melts, which was presented in an earlier paper, is developed in more detail. In particular, a detailed derivation of the equation of a first-order rheometrical flow surface is given and a procedure for determining parameters and functions occurring in this equation is proposed. The experimental verification of the presented approach was carried out using our data for polyamide-6.Notation E Dimensionless reduced viscosity, eq. (34) - E 0 Newtonian asymptote of the function (36) - E power-law asymptote of the function (36) - E = 1 the value ofE at = 1 - k degradation reaction rate constant, s–1 - k 1 rate constant of function (t), eq. (26), s–1 - k 2 rate constant of function (t), eq. (29), s–1 - K(t) residence-time-dependent consistency factor, eq. (22) - M w weight-average molecular weight - M x x-th moment of the molecular weight distribution - R gas constant - S x M x /M w - t residence time in molten state, s - t j thej-th value oft, s - T temperature, K - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xd9vqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaieGaceWFZo% Gbaiaaaaa!3B4E!\[\dot \gamma \] shear rate, s–1 - i thei-th value of , s–1 - r =1 the value of at = 1, s–1 - * reduced shear rate, eq. (44), s–1 - dimensionless reduced shear rate, eq. (35) - viscosity, Pa · s - shear-rate and residence-time dependent viscosity, Pa · s - zero-shear-rate degradation curve - degradation curve at - t0 (t) zero-residence-time flow curve - Newtonian asymptote of the RFS - instantaneous flow curve - power-law asymptote of the RFS - 0,0 zero-shear-rate and zero-residence-time viscosity, Pa · s - E=1 value of viscosity atE=1, Pa · s - * reduced viscosity, eq. (43), Pa · s - zero-residence-time rheological time constant, s - density, kg/m3 - (t),(t) residence time functions  相似文献   

7.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

8.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

9.
In this paper the horizontal layer of clear ice sticking to the substrate is melted by comparatively short wave radiation similar to solar radiation for the purpose of removing ice from the surface of the material subject to atmospheric icing. The radiating source used for melting is 300 wattages halogen lamps whose color temperature is 3200K at 100 voltages. From the present investigation, a typical phenomenon of backmelting is observed clearly and it can be found that the predicted results including the melting rate of upper and lower layers which are melted by radiant energy impinged on or penetrated the ice layer are in good agreement with the experimental results.
Aufschmelzen einer waagerechten Klareisschicht durch Strahlung
Zusammenfassung Eine waagerechte Klareisschicht, die auf einer Unterlage aufgefroren war, wurde durch kurzwellige Strahlung, Ähnlich der Sonnenstrahlung, zum Schmelzen gebracht, um die Entfernung von Eis nach atmosphÄrischer Vereisung zu untersuchen. Die Strahlungsquelle war eine 300 Watt-Halogenlampe mit einer Farbtemperatur von 3200 Kelvin bei 100 Volt. Als typische Erscheinung wurde ein Rückseiten-Schmelzen gefunden, im übrigen sind die vorausberechneten Schmelzraten an der Ober- und der Unterseite durch aufgenommene oder durchgelassene Strahlungsenergie in guter übereinstimmung mit den Messungen.

Nomenclature av monochromatic absorption coefficient - A transmission (= q r + {hi}/qro) - cp specific heat - Ebv monochromatic emissive power - hD mass transfer coefficient - hi initial thickness of ice layer - hm thickness of substrate - Li latent heat of melting - Lw latent heat of evaporation or condensation - heat flux absorbed at surface of substrate - qr0 radiant heat flux impinged onto ice or free surface - q r + {y} forward radiant heat flux - q r {y} backward radiant heat flux - S1 thickness of upper melt layer - S2 thickness of lower melt layer - S'2 distance from free surface to bottom surface of ice layer - t time - T temperature - T1 temperature of air-water or air-ice interface - T2 temperature of substrate surface - T3 temperature of back side surface of substrate - Tb temperature of radiating source - Ti temperature in ice layer - Tw1 temperature in upper melt layer - Tw2 temperature in lower melt layer - T environmental temperature - Ww saturated vapor concentration at free surface - Wt8 vapor concentration at environment - y distance from free or ice surface - y grid size of water or ice - ym grid size of substrate Greek symbols heat transfer coefficient - spectral absorptivity - t total absorptivity - i thermal diffusivity of ice - m thermal diffusivity of substrate - w thermal diffusivity of water - i thermal conductivity of ice - m thermal conductivity of substrate - w thermal conductivity of water - wavelength - av densitiy of air-vapor mixture - i density of ice - Stefan-Boltzman constant  相似文献   

10.
The problem of laminar forced convection heat transfer in short elliptical ducts with (i) uniform wall temperature and (ii) prescribed wall heat flux is examined in detail with the well known Lévêque theory of linear velocity profile near the wall. Moreover, consideration is given to the variation of the slope of the linear velocity profile with the position on the duct wall. A correction factor for the temperature dependent viscosity is included. Expressions for the local and average Nusselt numbers and wall temperatures are obtained. For the case of constant heat flux the Nusselt numbers are higher than for constant wall temperature.The results corresponding to the classical Graetz and Purday problems are deduced as special cases.Nomenclature a, b semiaxes of ellipse, b Graetz number (average), Re Pr D e/Z - h i o local heat transfer coefficient - J n(x) Bessel function of order n - K thermal conductivity of the fluid - [X] Laplace transform of X - N u o local Nusselt number, h i o D e/K - perimeter average Nusselt number - overall average Nusselt number - Nu w wall Nusselt number - Nu Nusselt number at large distance from the inlet - p Laplace transform parameter - Pr Prandtl number, C a/K - Re Reynolds number, D e / a - T temperature of the fluid - T 1, T W inlet and wall temperatures, respectively - u z local isothermal velocity along the axis of the duct - average fluid velocity - x, y, z Cartesian coordinates, z-axis parallel to the axis of the duct (z=0 at duct inlet) - Z length of the duct - thermal diffusivity, K/C - * correction factor for the temperature dependent viscosity - (x) gamma function - coordinate measured normal to the wall of the duct - a, w viscosity of fluid at average and wall temperatures - , , z elliptic cylindrical coordinates - density of fluid - (z) heat flux  相似文献   

11.
An analysis is presented for laminar source flow between infinite parallel porous disks. The solution is in the form of a perturbation from the creeping flow solution. Expressions for the velocity, pressure, and shear stress are obtained and compared with the results based on the assumption of creeping flow.Nomenclature a half distance between disks - radial coordinate - r dimensionless radial coordinate, /a - axial coordinate - z dimensionless axial coordinate, /a - radial coordinate of a point in the flow - R dimensionless radial coordinate of a point in the flow, /a - velocity component in radial direction - u =a/, dimensionless velocity component in radial direction - velocity component in axial direction - v = a/}, dimensionless velocity component in axial direction - static pressure - p = (a 2/ 2), dimensionless static pressure - =p(r, z)–p(R, z), dimensionless pressure drop - V magnitude of suction or injection velocity - Q volumetric flow rate of the source - Re source Reynolds number, Q/4a - reduced Reynolds number, Re/r 2 - critical Reynolds number - R w wall Reynolds number, Va/ - viscosity - density - =/, kinematic viscosity - shear stress at upper disk - 0 = (a 2/ 2), dimensionless shear stress at upper disk - shear stress ratio, 0/( 0)inertialess - u = , dimensionless average radial velocity - u/u, ratio of radial velocity to average radial velocity - dimensionless stream function  相似文献   

12.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

13.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

14.
Zusammenfassung Wird eine viskoelastische Flüssigkeit in einem konzentrischen Kugel-Kugel-Raum durch Rotation einer Kugel beansprucht, so ermöglicht eine Analyse der Antriebsmoment- und Druckverteilungskennlinie die Bestimmung rheologischer Parameter. Insbesondere zeigen die Ergebnisse, daß der in den konventionellen Meßapparaten nur ungenau dargestellte Bereich der Anfangsbeanspruchung durch geeignete Wahl von Spaltweite und Durchmesserverhältnis erfaßt werden kann.
Summary Visco-elastic liquids will be stressed in a concentric space between a sphere and a hollow sphere by rotation of one of the spheres. By analysis of the torque- and wall-pressure-characteristics it is possible to determine rheological parameters. In this paper it is shown how to measure the dynamic viscosity and the relaxation times in the range of initial shear-strain in a sphere-sphere-rheometer.

a isotroper Druckanteil - f i () Geometriefunktionen - g Erdbeschleunigung - h i , i Normalspannungsparameter - k, m Fließkurvenparameter des Potenzgesetzes - n Drehfrequenz der Innenkugel - p w Wanddruck - reduzierter Wanddruck - p 0 Außendruck - r, , Kugelkoordinaten - t 0,t 0i Anfangsrelaxationszeiten - v Geschwindigkeitsvektor - A, C Fließkurvenparameter des Polynomgesetzes - M Antriebsmoment - M i Drehmomentanteile - R Radius der Innenkugel - R G Radius der Hohlkugel - i Stoffkonstanten der rheologischen Zustandsfunktion - Schergradient - RadienverhältnisR/R G - variable dynamische Viskosität - 0 Anfangsviskosität - Proportionalitätsfaktor - Dichte - I , II , Viskosimeterfunktionen - Kreisfrequenz der Innenkugel - D Deformationsgeschwindigkeitstensor - I Einheitstensor - W Rotationstensor - Spannungstensor - korotationale zeitliche Ableitung des Deformationsgeschwindigkeitstensors (n-te Ableitung) - Nablaoperator Vorgetragen auf der Jahrestagung der Deutschen Rheologen vom 28.–30. April 1975 in Berlin.Mit 4 Abbildungen und 1 Tabelle  相似文献   

15.
Simultaneous measurements of the mean streamwise and radial velocities and the associated Reynolds stresses were made in an air-solid two-phase flow in a square sectioned (10×10 cm) 90° vertical to horizontal bend using laser Doppler velocimetry. The gas phase measurements were performed in the absence of solid particles. The radius ratio of the bend was 1.76. The results are presented for two different Reynolds numbers, 2.2×105 and 3.47×105, corresponding to mass ratios of 1.5×10–4 and 9.5×10–5, respectively. Glass spheres 50 and 100 m in diameter were employed to represent the solid phase. The measurements of the gas and solid phase were performed separately. The streamwise velocity profiles for the gas and the solids crossed over near the outer wall with the solids having the higher speed near the wall. The solid velocity profiles were quite flat. Higher negative slip velocities are observed for the 100 m particles than those for the 50 gm particles. At angular displacement =0°, the radial velocity is directed towards the inner wall for both the 50 and 100 m particles. At =30° and 45°, particle wall collisions cause a clear change in the radial velocity of the solids in the region close to the outer wall. The 100 m particle trajectories are very close to being straight lines. Most of the particle wall collisions occur between the =30° and 60° stations. The level of turbulence of the solids was higher than that of the air.List of symbols D hydraulic diameter (100 mm) - De Dean number,De = - mass flow rate - number of particles per second (detected by the probe volume) - r radial coordinate direction - r i radius of curvature of the inner wall - r 0 radius of curvature of the outer wall - r * normalized radial coordinate, - R mean radius of curvature - Re Reynolds number, - R r radius ratio, - U ,U z mean streamwise velocity - U r ,U y mean radial velocity - U b bulk velocity - , z rms fluctuating streamwise velocity - r , y rms fluctuating radial velocity - -r shear stress component - z-y shear stress component - x spanwise coordinate direction - x * normalized spanwise coordinate, - y radial coordinate direction in straight ducts - y * normalized radial coordinate in straight ducts, - z streamwise coordinate direction in straight ducts - z * normalized streamwise coordinate in straight ducts, Greek symbols streamwise coordinate direction - kinematic viscosity of air  相似文献   

16.
Zusammenfassung Ein Vergleich im Frequenzbereich zeigt, daß bei der Berechnung der Verweilzeitverteilung mit dem Dispersionsmodell das endlich begrenzte System für Péclet-Zahlen Pe > 10 mit guter Näherung durch ein einseitig unbegrenztes System und für Pe > 50 durch ein beidseitig unbegrenztes System ersetzt werden kann.
The dispersion model. A comparison of approximations
A comparison in the frequency domain shows that for the determination of the residence time distribution with the dispersion model the finitely restricted system may be substituted with good approximation for Peclet numbers Pe > 10 by a one-side unrestricted system and for Pe > 50 by a both-side unrestricted system.

Bezeichnungen A Rohrquerschnitt - A=A mittlerer Strömungsquerschnitt in der Schüttschicht - Konzentration (Partialdichte) der Bezugskomponente i - Bezugskonzentration nach Gl. (5) - ci Konzentration (Dichte) der reinen Bezugskomponente i - D axialer Dispersionskoeffizient - E Fehler im Frequenzbereich nach Gl. (36) - G(,) Übertragungsfunktion - G(,i) Frequenzgang - L Länge der Schüttschicht - m Masse - Massenstrom - Péclet-Zahl - s Laplace-Variable - t Zeit - t Impulsbreite - v Strömungsgeschwindigkeit im leeren Rohr - mittlere axiale Strömungsgeschwin digkeit in der Schüttschicht - V=AL Zwischenraumvolumen der Schüttschicht - x Ortskoordinate - (t) Dirac-Stoss - Porosität - dimensionslose Zeit - dimensionslose Konzentration - Laplace-Transformierte der Konzentration - Fourier-Transformierte der Konzentration - dimensionslose Ortskoordinate - =s dimensionslose Laplace-Variable - mittlere Verweilzeit - Kreisfrequenz - = dimensionslose Kreisfrequenz Indices A Ausgang - D Dispersion - E Eingang - i Bezugskomponente - K Konvektion Mitteilung Nr. 44 des Institutes für Mess-und Regel-technik der Eidgenössischen Technischen Hochschule Zürich (Vorsteher: Prof. Dr. P. Profos)  相似文献   

17.
An in depth study into the development and decay of distorted turbulent pipe flows in incompressible flow has yielded a vast quantity of experimental data covering a wide range of initial conditions. Sufficient detail on the development of both mean flow and turbulence structure in these flows has been obtained to allow an implied radial static pressure distribution to be calculated. The static pressure distributions determined compare well both qualitatively and quantitatively with earlier experimental work. A strong correlation between static pressure coefficient Cp and axial turbulence intensity is demonstrated.List of symbols C p static pressure coefficient = (pw-p)/1/2 - D pipe diameter - K turbulent kinetic energy - (r, , z) cylindrical polar co-ordinates. / 0 - R, y pipe radius, distance measured from the pipe wall - U, V axial and radial time mean velocity components - mean value of u - u, u/ , / - u, , w fluctuating velocity components - axial, radial turbulence intensity - turbulent shear stress - u friction velocity, (u 2 = 0/p) - 0 wall shear stress - * boundary layer thickness A version of this paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

18.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

19.
The scattering of an SH-wave by a discontinuity in mass-loading on a semi-infinite elastic medium is investigated theoretically. The incident wave is either a plane body wave or a plane SH-surface wave. The problem is reduced to a Wiener-Hopf problem for the scattered wave. In this problem the amplitude spectral density of the particle displacement occurs as unknown function. Special attention is given to the numerical values of the surface wave contributions to the scattered field.Nomenclature x 1, x 2, x 3 Cartesian coordinates - , polar coordinates in x 1, x 3-plane - volume mass density - surface mass density of mass-loading - , Lamé constants - U scalar wave function, defined by (2.1) - c S speed of propagation of uniform shear waves in bulk medium (c S=(/)1/2) - angular frequency - t time - k S wave number of uniform shear waves (k S=/c S) - reduced specific acoustic impedance of mass-loading (=k S /) - k m wave number of SH-surface wave (k m=k S(1+ 2)1/2) - 1,2,3 partial differentiation with respect to x 1,2,3 - i angle between x 3-axis and direction of propagation of incident body wave - i wave number in horizontal direction of incident body wave ( i=k S sin( i)) - i wave number in vertical direction of incident body wave ( i=k S cos( i)) - C 1,2 complex amplitude of surface wave excited by a body wave - R reflection factor of surface wave, when surface wave is incident - T transmission factor of surface wave, when surface wave is incident - S particle displacement vector The research presented in this paper has been carried out with partial financial support from the Delfts Hogeschoolfonds.  相似文献   

20.
Two jet methods for saturating the fluid boundary layer with microbubbles for drag reduction in contrust with gas injection through porous materials are considered. The first method is the gas injection through the slot under a special fluid wall jet. The second method is the saturation of boundary layer by microbubbles via the gas-water mixture injection through the slot. Experimental data, reflecting the skin friction drag reduction on the flat plate and total drag reduction of axisymmetric bodies, are presented. The comparison between a jet methods of gas injection and gas injection through porous materials is made.Nomenclature v free-stream velocity - v j mean velocity of a water through slot - v g mean velocity of a gas through slot - h width of slot for realizing water jet - h 1 width of slot for gas injection - incidence angle - Q volume airflow rate - C Q airflow rate coefficient (v g/v ) - C f skin friction coefficient - v j/v - C f0 C f ifQ=0 andv j=0 - f C f/C f 0 - d diameter of an axisymmetric body - L length of body - C Q 4 · ·Q/d 2 v - C D 4 ·D/1/2v 2 ·d 2 - C Q 4 ·Q/d 2 v - Q j volume flow rate of water jet - C 8 ·Q jvj/d 2 v 2 - 1 fluid density of main flow - 2 fluid density of wall jet - B 1 main stream total pressure - B 2 wall jet total pressure - v 1 main stream velocity - Be (B 2B 1)/1/21 v 1 2 = Bernoulli number - 2 v 2/1 v 1 - p st static pressure - p at atmospheric pressure - p st/p at - D hydrodynamic drag of body  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号