首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Antimony clusters are produced by the inert gas condensation technique. They are found to be built from Sb4 units. The fragmentation by evaporation of Sb4 units is studied as a function of the excess energy in the cluster. By this way the binding energy of the Sb4 units in the cluster is found to be about 1.5 eV, well below the binding energy of a Sb atom in the bulk and in Sb4(?3eV). The evolution of ionization potentials of Sb4n clusters confirms that their structure is probably non metallic. Finally the possible metastable character of this Sb4n structure is discussed.  相似文献   

2.
Small AgnPd (n = 5) clusters and their hydrides AgnPdH (n = 5) have been studied by density functional theory calculations. For bare clusters, the structures in which the Pd atom has a maximum number of neighboring Ag atoms tend to be energetically favorable. Hydrogen prefers binding to Ag? Pd bridge site of AgnPd clusters except for Ag5Pd. The binding energy has a strong odd–even oscillation. The electron transfers are from Ag atoms to Pd in bare clusters and are from metal clusters to H in cluster hydrides. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
Density functional GGA-PW91 method with DNP basis set is applied to optimize the geometries of Ag n H (n = 1–10) clusters. For the lowest energy geometries of Ag n H (n = 1–10) clusters, the hydrogen atom prefers to occupy the two-fold coordination bridge site except the occupation of single-fold coordination site in AgH cluster. After adsorption of hydrogen atom, most Ag n structures are slightly perturbed and only the Ag6 structure in Ag6H cluster is distorted obviously. The Ag–Ag bond is strengthened and the strength of Ag–H bond exhibits a clear odd–even oscillation like the strength of Au–H bond in Au n H clusters, indicating that the hydrogen atom is more favorable to be adsorbed by odd-numbered pure silver clusters. The adsorption strength of small silver cluster toward H atom is obviously weaker than that of small gold cluster toward H atom due to the strong scalar relativistic effect in small gold cluster. The pronounced odd–even alternation of the magnetic moments is observed in Ag n H systems, indicating that the Ag n H clusters possess tunable magnetic properties by adsorbing hydrogen atom onto odd-numbered or even-numbered small silver cluster.  相似文献   

4.
The novel hydrothermally synthesized title compound, pentabarium tetrachloride octahydrate octakis(oxovanadium phosphate), Ba5Cl4(H2O)8(VPO5)8, crystallizes in the orthorhombic space group Cmca with a unit cell containing four formula units. Two Ba2+ cations, two Cl anions and the O atoms of four water molecules are situated on the (100) mirror plane, while the third independent Ba2+ cation is on the intersection of the (100) plane and the twofold axis parallel to a. Two phosphate P atoms are on twofold axes, while the remaining independent P atom and both V atoms are in general positions. The structure is characterized by two kinds of layers, namely anionic oxovanadium phosphate (VPO5), composed of corner‐sharing VO5 square pyramids and PO4 tetrahedra, and cationic barium chloride hydrate clusters, Ba5Cl4(H2O)8, composed of three Ba2+ cations linked by bridging chloride anions. The layers are connected by Ba—O bonds to generate a three‐dimensional structure.  相似文献   

5.
6.
Single crystals of Ba14Cu2In4N7, tetradecabarium dicopper tetraindium heptanitride, were synthesized by slow cooling from 1023 K at 7 MPa of N2 using an Na flux. The compound crystallizes in the monoclinic space group P2/m with Z = 2, and contains 0[CuN2] nitrido­cuprate units and distorted 0[In4] clusters. One Ba atom, not connected to any N atoms, is surrounded by 12 other Ba atoms in a barium cuboctahedron. The structural formula is expressed as (Ba)Ba27N6[CuN2]4[In4]2.  相似文献   

7.
Small neutral, anionic, and cationic silver cluster hydrides AgnH and anionic HAgnH (n=1-7) have been studied using the PW91PW91 density functional method. It was found that the most stable structure of the AgnH complex (neutral or charged) does not always come from that of the lowest energy bare silver cluster plus an attached H atom. Among various possible adsorption sites, the bridge site is energetically preferred for the cationic and most cases of neutral Agn. For anionic Agn, the top site is preferred for smaller Agn within n相似文献   

8.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

9.
The dopant and size-dependent propene adsorption on neutral gold (Aun) and yttrium-doped gold (Aun−1Y) clusters in the n=5–15 size range are investigated, combining mass spectrometry and gas phase reactions in a low-pressure collision cell and density functional theory calculations. The adsorption energies, extracted from the experimental data using an RRKM analysis, show a similar size dependence as the quantum chemical results and are in the range of ≈0.6–1.2 eV. Yttrium doping significantly alters the propene adsorption energies for n=5, 12 and 13. Chemical bonding and energy decomposition analysis showed that there is no covalent bond between the cluster and propene, and that charge transfer and other non-covalent interactions are dominant. The natural charges, Wiberg bond indices, and the importance of charge transfer all support an electron donation/back-donation mechanism for the adsorption. Yttrium plays a significant role not only in the propene binding energy, but also in the chemical bonding in the cluster-propene adduct. Propene preferentially binds to yttrium in small clusters (n<10), and to a gold atom at larger sizes. Besides charge transfer, relaxation also plays an important role, illustrating the non-local effect of the yttrium dopant. It is shown that the frontier molecular orbitals of the clusters determine the chemical bonding, in line with the molecular-like electronic structure of metal clusters.  相似文献   

10.
A discrete sequence of bare gold clusters of well‐defined nuclearity, namely Au25+, Au38+ and Au102+, formed in a process that starts from gold‐bound adducts of the protein lysozyme, were detected in the gas phase. It is proposed that subsequent to laser desorption ionization, gold clusters form in the gas phase, with the protein serving as a confining growth environment that provides an effective reservoir for dissipation of the cluster aggregation and stabilization energy. First‐principles calculations reveal that the growing gold clusters can be electronically stabilized in the protein environment, achieving electronic closed‐shell structures as a result of bonding interactions with the protein. Calculations for a cluster with 38 gold atoms reveal that gold interaction with the protein results in breaking of the disulfide bonds of the cystine units, and that the binding of the cysteine residues to the cluster depletes the number of delocalized electrons in the cluster, resulting in opening of a super‐atom electronic gap. This shell‐closure stabilization mechanism confers enhanced stability to the gold clusters. Once formed as stable magic number aggregates in the protein growth medium, the gold clusters become detached from the protein template and are observed as bare Aun+ (n=25, 38, and 102) clusters.  相似文献   

11.
We use density functional theory to examine the electronic structure of small Au(n) (n=1-7) clusters, supported on a rutile TiO(2)(110) surface having oxygen vacancies on the surface (a partially reduced surface). Except for the monomer, the binding energy of all Au clusters to the partially reduced surface is larger by approximately 0.25 eV than the binding energy to a stoichiometric surface. The bonding site and the orientation of the cluster are controlled by the shape of the highest occupied molecular orbitals (HOMOs) of the free cluster (free cluster means a gas-phase cluster with the same geometry as the supported one). The bond is strong when the lobes of the HOMOs overlap with those of the high-energy states of the clean oxide surface (i.e., with no gold) that have lobes on the bridging and the in-plane oxygen atoms. In other words, the cluster takes a shape and a location that optimizes the contact of its HOMOs with the oxygen atoms. Fivefold coordinated Ti atoms located at a defect site (5c-Ti(*)) participate in the binding only when a protruding lobe of the singly occupied molecular orbital (for odd n) or the lowest unoccupied molecular orbital (for even n) of the free Au(n) cluster points toward a 5c-Ti(*) atom. The oxygen vacancy influences the binding energy of the clusters (except for Au(1)) only when they are in direct contact with the defect. The desorption energy and the total charge on clusters that are close to, but do not overlap with, the vacancy differ little from the values they have when the cluster is adsorbed on a stoichiometric surface. The behavior of Au(1) is rather remarkable. The atom prefers to bind directly to the vacancy site with a binding energy of 1.81 eV. However, it also makes a strong bond (1.21 eV) with any 5c-Ti atom even if that atom is far from the vacancy site. In contrast, the binding of a Au monomer to the 5c-Ti atom of a surface without vacancies is weak (0.45 eV). The presence of the vacancy activates the 5c-Ti atoms by populating states at the bottom of the conduction band. These states are delocalized and have lobes protruding out of the surface at the location of the 5c-Ti atoms. It is the overlap of these lobes with the highest orbital of the Au atom that is the major reason for the bonding to the 5c-Ti atom, no matter how far the latter is from the vacancy. The energy for breaking an adsorbed cluster into two adsorbed fragments is smaller than the kinetic energy of the mass-selected clusters deposited on the surface in experiments. However, this is not sufficient for breaking the cluster upon impact with the surface, since only a fraction of the available energy will go into the reaction coordinate for breakup.  相似文献   

12.
In Sr(BF4)2, which is isomorphous with the previously published Ca(BF4)2, the metal atom possesses a coordination number of 8 with a square‐antiprismatic environment. Each tetrafluoridoborate anion is bonded to four metal centers. In the barium derivative, the metal center, with symmetry 2/m, is surrounded by 14 F atoms. The B atom and two of the three independent F atoms occupy special positions with symmetry m. Each anion is connected to five Ba atoms. This structure differs significantly from an earlier published structure of Ba(BF4)2 [published as Ba2(BF4)4; Lin, Cheng, Chen & Huang (1998). Jiegon Huaxue, 17 , 245]. The radial distribution functions for the present Ba(BF4)2 and earlier Ba2(BF4)4 structures differ significantly.  相似文献   

13.
The pseudo element concept is applied to isolated Zintl anions [Y10M]n—, where M is Ni or Zn, and Y is a third group element, which is replaced by a fourth group element X. The aim of the theoretical study is to identify stable binary metal atom clusters and to test the robustness of the Zintl concept. DFT and RIMP2 methods are employed for this purpose. All low‐energy isomers of [X10M]m+ show structures known from corresponding Zintl anions. A partial replacement of only six third group elements, however, may lead to different low‐energy topologies. The cohesive energy of the clusters X10Ni (X = Si, Ge, Sn, Pb) is significantly higher than that of the bare X10 species, binding energy of the Ni atom amounts to about 5 eV.  相似文献   

14.
A new mixed barium zirconium oxalate, tri­aqua­tetra‐μ‐oxalato‐dibarium(II)­zirconium(IV), Ba2Zr(C2O4)4·3H2O or [Ba2Zr(C2O4)4(H2O)3]n, has been synthesized. The complex is built from eightfold‐coordinated Zr atoms and eleven‐ and sixfold‐coordinated Ba atoms, linked by oxalate groups. The Zr atom, the two Ba atoms and one water O atom lie on crystallographic twofold axes, so that each coordination polyhedron has imposed C2 symmetry. Packing in the crystal is also assumed through hydrogen bonds.  相似文献   

15.
The effects of adding molecules on the LIF at 540 nm of a barium atom at the surface of an argon cluster (average size 420) has been investigated. We showed that molecules like ethanol,n-hexane and O2 from stable complexes with ground state barium. In the case of molecules like N2, CH4 and SF6, the collisional quenching of solvated Ba(1 P) is observed. The large quenching rates obtained are interpreted by a surface mobility of the collisional partners. Moreover, we showed that this collisional quenching leads to the ejection of free Ba(3 P 1).  相似文献   

16.
The structural and magnetic properties of small gas-phase Fe m Co n clusters with m?+?n ranging between 2 and 7 atoms are investigated using spin-polarized density functional theory. For a given cluster size possible compositions are subject to optimization using a variety of initial structures. The geometry, bond lengths, binding energies and magnetization are reported for the lowest energy structures. The results show that a magnetization peak occurs for Fe4, while for hybrid clusters, switching a cobalt atom with an iron atom increases the cluster’s total magnetization by 1?μ B . Our structural predictions are generally in agreement with other theoretical results; the origin of the discrepancies arising in some cases is discussed.  相似文献   

17.
Dibarium μ‐oxido‐bis[pentachloridoruthenate(IV)] decahydrate, Ba2Ru2Cl10O·10H2O, has been prepared from ruthenium(III) chloride and barium chloride in hydrochloric acid. It crystallizes in the monoclinic system (space group C2/c). The structure consists of alternating layers of [Ru2Cl10O]4− and [Ba(H2O)7]2+ complex ions along the a direction. The O atom bonded to ruthenium occupies the 4e site, with symmetry, while the other atoms occupy general 8f sites. The overall structure is held together by O—H...O hydrogen bonds and O—H...Cl dipole–dipole interactions.  相似文献   

18.
The sequential impulse model for direct reactions of Mahan, Ruska and Winn is extended to include endothermic reactions. The model is outlined and used to predict the variation in cross section with kinetic energy for heavy atom—light homonuclear diatom reactions. The results are found to agrees well with experimental data for the reaction Ba+(D2, D)BaD+. The bond dissociation energy of BaD+, 2.5 ± 0.1 eV, and the proton affinity of Ba, 250 ± 3 kcal/mol, are derived.  相似文献   

19.
Highly monochromatized electrons (with 30 meV FWHM) are used in a crossed beams experiment to investigate electron attachment to oxygen clusters (O2)n at electron energies from approximately zero eV up to 2 eV. At energies close to zero the attachment cross section for the reaction (O2)n +e → O 2 ? varies inversely with the electron energy, indicative of s-wave electron capture to (O2)n. Peaks in the attachment cross section present at higher energies can be ascribed to vibrational levels of the oxygen anion. The vibrational spacings observed can be quantitatively accounted for. In addition electron attachment to mixed oxygen/ozone clusters has been studied in the energy range up to 4 eV. Despite the initially large excess of oxygen molecules in the neutral clusters the dominant attachment products are undissociated cluster ions (O3) m ? including the O 3 ? monomer while oxygen cluster ions (O2) n ? appear with comparatively low intensity.  相似文献   

20.
Reaction of Ba[N(SiMe3)2]2 with PhSiH3 in toluene gave simple access to the unique Ba hydride cluster Ba7H7[N(SiMe3)2]7 that can be described as a square pyramid spanned by five Ba2+ ions with two flanking BaH[N(SiMe3)2] units. This heptanuclear cluster is well soluble in aromatic solvents, and the hydride 1H NMR signals and coupling pattern suggests that the structure is stable in solution. At 95 °C, no coalescence of hydride signals is observed but the cluster slowly decomposes to undefined barium hydride species. The complex Ba7H7[N(SiMe3)2]7 is a very strong reducing agent that already at room temperature reacts with Me3SiCH=CH2, norbornadiene, and ethylene. The highly reactive alkyl barium intermediates cannot be observed and deprotonate the (Me3Si)2N ion, as confirmed by the crystal structure of Ba14H12[N(SiMe3)2]12[(Me3Si)(Me2SiCH2)N]4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号