首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈雯雯  甘忠桥  秦建华 《色谱》2021,39(9):968-980
外泌体是一类由细胞分泌的含有脂质、蛋白、核酸等多种物质的纳米级囊泡,主要参与细胞间的物质交换及信息传导,与多种疾病的发生发展密切相关。对外泌体进行深入研究,理解其生物学功能,对疾病诊断与治疗具有重要意义。由于外泌体尺寸较小且密度和体液接近,想要对复杂生物样本中的外泌体进行分离与分析十分困难。传统的外泌体分离方法如超速离心、超滤等大都需要借助大型仪器设备,且耗时长、操作复杂。因此迫切需要开发高效、便捷的外泌体分离检测手段。微流控技术因其微型化、高通量、可集成等特点,为外泌体的分离分析提供了一个新的平台。该文主要对近年来微流控技术在外泌体分离分析相关领域的研究进展进行了综述。重点从外泌体物理特性和生化特性两个角度出发,介绍了微流控芯片技术用于外泌体分离领域的主要原理、策略和方法。此外,还介绍了微流控技术与荧光、电化学传感、表面等离子体共振等多模态检测方法结合,实现外泌体一体化分析的新进展。最后,该文分析了目前微流控技术用于外泌体分离检测存在的挑战,并对其发展趋势和前景进行了展望。随着微流控外泌体分离分析装置的不断微型化、集成化、自动化,微流控芯片技术将在外泌体分离、生化检测、机制研究等方面将发挥越来越重要的作用。  相似文献   

2.
Herein we report a CRISPR‐Cas9‐mediated loss‐of‐function kinase screen for cancer cell deformability and invasive potential in a high‐throughput microfluidic chip. In this microfluidic cell separation platform, flexible cells with high deformability and metastatic propensity flowed out, while stiff cells remained trapped. Through deep sequencing, we found that loss of certain kinases resulted in cells becoming more deformable and invasive. High‐ranking candidates identified included well‐reported tumor suppressor kinases, such as chk2, IKK‐α, p38 MAPKs, and DAPK2. A high‐ranking candidate STK4 was chosen for functional validation and identified to play an important role in the regulation of cell deformability and tumor suppression. Collectively, we have demonstrated that CRISPR‐based on‐chip mechanical screening is a potentially powerful strategy to facilitate systematic genetic analyses.  相似文献   

3.
4.
Direct transport powered by motor proteins can alleviate the challenges presented by miniaturization of microfluidic systems. There have been several recent attempts to build motor‐protein‐driven transport systems based on simple capturing or transport mechanisms. However, to achieve a multifunctional device for practical applications, a more complex sorting/transport system should be realized. Herein, the proof of concept of a sorting device employing selective capture of distinct target molecules and transport of the sorted molecules to different predefined directions is presented. By combining the bottom‐up functionality of biological systems with the top‐down handling capabilities of micro‐electromechanical systems technology, highly selective molecular recognition and motor‐protein‐based transport is integrated in a microfluidic channel network.  相似文献   

5.
We report the first electrochemical system for the detection of single‐nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real‐time melting‐curve analysis of surface‐immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late‐onset Alzheimer’s disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe–target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP‐based diseases and personalized medicine.  相似文献   

6.
Type I photosensitizers with aggregation-induced emission luminogens (AIE-gens) have the ability to generate high levels of reactive oxygen species (ROS), which have a good application prospect in cancer photodynamic therapy (PDT). However, the encapsulation and delivery of AIE molecules are unsatisfactory and seriously affect the efficiency of a practical therapy. Faced with this issue, we synthesized the metal-organic framework (MOF) in one step using the microfluidic integration technology and encapsulated TBP-2 (an AIE molecule) into the MOF to obtain the composite nanomaterial ZT. Material characterization showed that the prepared ZT had stable physical and chemical properties and controllable size and morphology. After being endocytosed by tumor cells, ZT was degraded in response to the acidic tumor microenvironment (TME), and then TBP-2 molecules were released. After stimulation by low-power white light, a large amount of •OH and H2O2 was generated by TBP-2 through type I PDT, thereby achieving a tumor-killing effect. Further in vitro cell experiments showed good biocompatibility of the prepared ZT. To the best of our knowledge, this report is the first on the microfluidic synthesis of multifunctional MOF for type I PDT in response to the TME. Overall, the preparation of ZT by the microfluidic synthesis method provides new insight into cancer therapy.  相似文献   

7.
We present a hollow‐structured rigid nanovesicle (RNV) fabricated by a multi‐stage microfluidic chip in one step, to effectively entrap various hydrophilic reagents inside, without complicated synthesis, extensive use of emulsifiers and stabilizers, and laborious purification procedures. The RNV contains a hollow water core, a rigid poly (lactic‐co‐glycolic acid) (PLGA) shell, and an outermost lipid layer. The formation mechanism of the RNV is investigated by dissipative particle dynamics (DPD) simulations. The entrapment efficiency of hydrophilic reagents such as calcein, rhodamine B and siRNA inside the hollow water core of RNV is ≈90 %. In comparison with the combination of free Dox and siRNA, RNV that co‐encapsulate siRNA and doxorubicin (Dox) reveals a significantly enhanced anti‐tumor effect for a multi‐drug resistant tumor model.  相似文献   

8.
A simple, fast and cost‐effective method was developed and validated for the determination of levetiracetam (LEV) in plasma/serum of patients using high performance liquid chromatography (HPLC) with ultraviolet detection. The stability of LEV plasma/serum samples over time and in different blood collection tubes was evaluated. Serum/plasma samples were deproteinized by methanol spiked with the internal standard, gabapentin. HPLC was carried out on a Venusil XBP C18, 250 × 4.6 mm, 5 μm column, at a flow rate of 1.0 mL/min and with mobile phase consisting of 50 mm potassium dihydrogen phosphate–acetonitrile at a pH of 5.5. The UV detector was set at 205 nm and 10 μL was injected. Total runtime was 15 min. Calibration curves were linear (correlation coefficient = 0.999) over a concentration range of 1–60 μg/mL. Relative standard deviation values for both the inter‐day and intra‐day precision and accuracy were <5% for the concentration range. The influence of different collection tubes and the effect of time on the stability of LEV was investigated. These factors may cause inaccuracies owing to drug–protein binding and interference in the matrix. This method is simple, fast, cost‐effective, reliable and accurate with minimal sample preparation for daily routine use in therapeutic drug monitoring.  相似文献   

9.
Based on the size- and shape-selective sorption, 13X molecular sieves were developed as solid-phase extraction adsorbents to cleanup serum extract for the determination of polybrominated diphenyl ethers. The important parameters affecting the cleanup efficiency were investigated including the amount of sorbents, the type, and volume of solvents. Under the optimized conditions, the capacity for removing impurities was evaluated via gel permeation chromatography and gas chromatography with mass spectrometry. The results demonstrated that up to 99% of lipids in corn oil (13 mg) can be removed after cleanup, and endogenous compounds in serum can also be effectively eliminated. The cleanup efficiency is not only superior to hydrophile-lipophile balance column, but also close to acid silica gel and multifunction impurity sorbents. Generally, the developed cleanup method exhibited higher recovery for polybrominated diphenyl ethers with more than four bromines, especially for nona- and deca-brominated diphenyl ethers (99.1˗117.8%). The cleanup method can be coupled with gas chromatography and tandem mass spectrometry for polybrominated diphenyl ethers analysis in human serum. The method detection limits were 0.01˗0.27 ng/mL and average recovery was 50.9˗113.3%, except 2,3',4',6-tetrabrominated, 2,3',4,4',6-pentabrominated, and 2,3,3',4,4',5',6-heptabrominated diphenyl ethers. 2,2',4,5'-Tetrabrominated diphenyl ethers had the highest detection frequency (95%) in human serum, whereas decabrominated diphenyl ethers had the maximum mean concentration (0.50 ng/mL).  相似文献   

10.
Electroorganic synthesis is a promising tool to design sustainable transformations and discover new reactivities. However, the added setup complexity caused by electrodes in the system impedes efficient screening of reaction conditions. Herein, we present a microfluidic platform that enables automated high-throughput experimentation (HTE) for electroorganic synthesis at a 15-microliter scale. Two HTE modules are demonstrated: 1) the rapid electrochemical reaction condition screening for a radical–radical cross-coupling reaction on micro-fabricated interdigitated electrodes, and 2) measurements of kinetics for mediated anodic oxidations using the microliter-scale cyclic voltammetry. The presented modular approach could be deployed for a range of other electroorganic chemistry applications beyond the demonstrated functionalities.  相似文献   

11.
离子水合及生物分子体系内离子选择性的微观作用机制是人们长期探索的重要课题,其难点在于如何合理精确地描述上述体系内的离子-水、离子-生物分子等各种相互作用.本文主要总结近年来原子-键电负性均衡浮动电荷分子力场(ABEEM/MM)在含离子体系中的发展和应用,包括离子水溶液、金属蛋白、离子-核酸碱基体系的研究.我们优选相关参数,构建上述体系的势能函数,并对气相水合离子团簇、离子水溶液、金属蛋白、离子-核酸碱基体系进行研究,模拟其结构、活性、热力学和动力学等性质.研究和比较结果表明,我们的ABEEM浮动电荷力场总体上优于其它力场方法,其精度可达到或接近高水平从头计算MP2方法.这为进一步探讨生物分子体系内的离子选择性、金属酶及其它含离子体系的结构和性质奠定了基础.  相似文献   

12.
 In channels with dimensions much less than 1 mm, fluids with viscosities similar to or higher than that of water and flowing at low velocities exhibit laminar behavior. This allows the adjacent flow of fluids and particles in a channel without mixing other than by diffusion. We demonstrate here the use of a 3-input microfluidic device known as a T-Sensor for the analysis of blood. A sample solution (e.g. whole blood), a receptor solution (e.g. an indicator solution), and a reference solution (a known analyte standard) are introduced into a common channel (T-Sensor), and flow side by side until they leave the structure. Smaller particles such as ions or small proteins diffuse rapidly across the fluid boundaries, whereas larger molecules diffuse more slowly. Large particles (e.g. blood cells) show no significant diffusion within the time the flow streams are in contact. Two interface zones are formed between the fluid layers. The ratio of a property (e.g. fluorescence intensity) of the outer portions of the two interface zones is a function of the concentration of the analyte, and is largely free of cross-sensitivities to other sample components and instrument parameters. This device allows, for example, one-time or continuous monitoring of the concentration of analytes in microliters of whole blood without the use of membranes or prior removal of blood cells. The principle is illustrated by the determination of pH and human albumin in whole blood and serum. Results are also presented for zero-gravity experiments performed with a T-Sensor on board a NASA experimental plane. Due to its microfluidic flow characteristics, a T-Sensor functions independently of orientation and strength of the gravitational field. This was demonstrated by exposing a T-Sensor to variations in gravity from 0 to 1.8 g in a NASA KC135A plane flying repetitive parabolic flight curves. Received May 22, 1998. Revision November 10, 1998.  相似文献   

13.
14.
15.
Ambient ionization based on liquid extraction is widely used in mass spectrometry imaging (MSI) of molecules in biological samples. The development of nanospray desorption electrospray ionization (nano-DESI) has enabled the robust imaging of tissue sections with high spatial resolution. However, the fabrication of the nano-DESI probe is challenging, which limits its dissemination to the broader scientific community. Herein, we describe the design and performance of an integrated microfluidic probe (iMFP) for nano-DESI MSI. The glass iMFP, fabricated using photolithography, wet etching, and polishing, shows comparable performance to the capillary-based nano-DESI MSI in terms of stability and sensitivity; a spatial resolution of better than 25 μm was obtained in these first proof-of-principle experiments. The iMFP is easy to operate and align in front of a mass spectrometer, which will facilitate broader use of liquid-extraction-based MSI in biological research, drug discovery, and clinical studies.  相似文献   

16.
17.
A matter of orientation: The nanofibers in cables that consist of assemblies of these nanofibers can be oriented parallel or perpendicular to the longitudinal axis by regulating the fluidic velocities of the core and sheath flows in coaxial microfluidic devices. Control of the internal morphology enables fabrication of cables with improved electrical conductivity and mechanical properties.  相似文献   

18.
Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.  相似文献   

19.
To enable the investigation of low-affinity biomolecular complexes with confocal single-molecule spectroscopy, we have developed a microfluidic device that allows a concentrated sample to be diluted by up to five orders of magnitude within milliseconds, at the physical limit dictated by diffusion. We demonstrate the capabilities of the device by studying the dissociation kinetics and structural properties of low-affinity protein complexes using single-molecule two-color and three-color Förster resonance energy transfer (FRET). We show that the versatility of the device makes it suitable for studying complexes with dissociation constants from low nanomolar up to 10 μm , thus covering a wide range of biomolecular interactions. The design and precise fabrication of the devices ensure simple yet reliable operation and high reproducibility of the results.  相似文献   

20.
功能分子在外界刺激(酸、碱、光等)的诱导下能发生分子构型、构象变化,并引起相应的物理化学性质变化,或能实现特定的功能,例如具有方向性的电子、能量转移,对分子/离子的识别能力的调控,以及光/电开关功能.功能分子的设计是分子材料科学研究的基础.作者将就我们在分子机器,化学传感器等功能分子的设计合成与性质研究领域取得的进展作一总结,并对未来的发展进行了描述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号