首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of dimethyl sulfoxide with carbon dioxide and water molecules which induce 18 significantly stable complexes are thoroughly investigated. An addition of CO2 or H2O molecules into the DMSO⋯1CO2 and DMSO⋯1H2O systems leads to an increase in the stability of the resulting complexes, in which it is larger for a H2O addition than a CO2. The overall stabilization energy of the DMSO⋯1,2CO2 is mainly contributed by the S=O⋯C Lewis acid–base interaction, whereas the O − H⋯O hydrogen bond plays a significant role in stabilizing complexes of DMSO⋯1,2H2O and DMSO⋯1CO2⋯1H2O. Remarkably, the complexes of DMSO⋯2H2O are found to be more stable than DMSO⋯1CO2⋯1H2O and DMSO⋯2CO2. The level of the cooperativity of multiple interactions in ternary complexes tends to decrease in going from DMSO⋯2H2O to DMSO⋯1CO2⋯1H2O and finally to DMSO⋯2CO2. It is generally found that the red shift of the O − H bond involved in an O − H⋯O hydrogen bond increases while the blue shift of a C − H bond in a C − H⋯O hydrogen bond decreases when a cooperative effect occurs in ternary complexes as compared to those of the corresponding binary complexes. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
The basicity of the simplest silicone, disiloxane (H3Si−O−SiH3), is strongly affected by the Si−O−Si angle (α). We use high-level ab initio MP2/aug′-cc-pVTZ calculations and the molecular electrostatic potential (MEP) to analyze the relationship between the increase in basicity and the reduction of α. Our results clearly point out that this increase can be explained through the MEP, as the interactions between oxygen from disiloxane and the acceptors are mostly electrostatic. Furthermore, the effect of α on the tetrel bond between disiloxane and several Lewis bases can again be rationalized using the MEP. Finally, we explore the cooperativity throughout α for ternary complexes where disiloxane simultaneously interacts with a Lewis acid and a Lewis base. Both non-covalent interactions remain cooperative for all α values, although the largest cooperativity effects are not always those maximizing the binding energy in the binary complexes. Overall, the MEP remains a powerful predictor for noncovalent interactions.  相似文献   

3.
Ab initio calculation at the MP2/aug-cc-pVTZ level has been performed on the π-hole based NSi tetrel bonded complexes between substituted pyridines and H2SiO. The primary aim of the study is to find out the effect of substitution on the strength and nature of this tetrel bond, and its similarity/difference with the NC tetrel bond. Correlation between the strength of the NSi bond and several molecular properties of the Lewis acid (H2SiO) and base (pyridines) are explored. The properties of the tetrel bond are analyzed using AIM, NBO, and symmetry-adapted perturbation theory calculations. The complexes are characterized with short NSi intermolecular distances and high binding energies ranging between −142.72 and −115.37 kJ/mol. The high value of deformation energy indicates significant geometrical distortion of the monomer units. The AIM and NBO analysis reveal significant coordinate covalent bond character of the N⋅⋅⋅Si π-hole bond. Sharp differences are also noticed in the orbital interactions present in the N⋅⋅⋅Si and N⋅⋅⋅C tetrel bonds.  相似文献   

4.
The complexes between borazine and TH3F/F2TO/H2TO (T = C, Si, Ge) are investigated with high-level quantum chemical calculations. Borazine has three sites of negative electrostatic potential: the N atom, the ring center, and the H atom of the B H bond, whereas TH3F and F2TO/H2TO provide the σ-hole and π-hole, respectively, for the tetrel bond. The N atom of borazine is the favored site for both the σ and π-hole tetrel bonds. Less-stable dimers include a σ-tetrel bond to the borazine ring center and to the BH proton. The π-hole tetrel-bonded complexes are more strongly bound than are their σ-hole counterparts. Due to the coexistence of both T···N tetrel and B···O triel bonding, the complexes of borazine with F2TO/H2TO (T = Si and Ge) are very stable, with interaction energies up to −108 kcal/mol. The strongly bonded complexes are accompanied by substantial net charge transfer from F2TO/H2TO to borazine.  相似文献   

5.
The nature of the complexes PhTH3 H3ZO and PhSiF3 H3ZO (T = Si, Ge, and Sn; Z = N, P, and As) has been investigated at the MP2/aug’‐cc‐pVTZ(PP) level. These complexes are primarily stabilized by one T···O tetrel bond. Interaction energies of these complexes vary from 11 to 220 kJ/mol, and T···O separations from 1.89 to 3.09 Å. Charge transfer from the O lone pair into the C T and T H σ* antibonding orbitals leads to the stabilization of these complexes. The T···O tetrel bond between PhTH3/PhSiF3 and H3NO exhibits a significant degree of covalence, characterized by the large interaction energy, negative energy density, and large charge transfer. Furthermore, a pentacoordinate silicon (IV) complex is formed in PhSiF3 H3NO with the Si···O distance almost close to the length of Si O bond. This indicates that the oxygen atom in N‐oxides shows a strong affinity to the silicon atom in organosilicon compounds.  相似文献   

6.
The aerogen bond is formed in complexes of HCN−XeF2O and C2H4−XeF2O. The lone pair on the N atom of HCN is a better electron donor in the aerogen bond than the π electron on the C=C bond of C2H4. The coinage substitution strengthens the aerogen bond in MCN−XeF2O (M=Cu, Ag, and Au) and its enhancing effect becomes larger in the Au<Cu<Ag pattern. The aerogen bond is further enhanced by the regium bond in C2H2−MCN−XeF2O and C2H4−MCN−XeF2O, but is weakened by the regium bond in MCN−C2H4−XeF2O and C2(CN)4−MCN−XeF2O. Simultaneously, the regium bond is also strengthened or weakened in these triads. The synergistic and diminutive effects between regium and aerogen bonds have been explained by means of charge transfer and electrostatic potentials.  相似文献   

7.
Donor–acceptor complexes of silicon halides with ammonia, pyridine, and 2,2′bipyridine SiX4 · nD (X = F, Cl, Br) have been studied at the B3LYP/pVDZ level of theory. Energies of the donor–acceptor bond have been estimated taking into account the reorganization energy of the donor and acceptor fragments and basis set superposition error correction. Despite of the very low (or even negative) dissociation energy of SiX4 · nD into free fragments, the Si–N bonding in all complexes is rather strong (75–220 kJ mol?1). It is the reorganization energy of the acceptor SiX4 (75–280 kJ mol?1) that governs the dissociation energy of the complex. Thus, in contrast to the complexes of group 13 halides, the reorganization effects are crucial for the complexes of group 14 halides, and their neglecting leads to erroneous conclusions about the strength of the donor–acceptor bond in these systems. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

8.
1,1,2,2-Tetracyanocyclopropane derivatives 1 and 2 were designed and synthesized to probe the utility of sp3-C centred tetrel bonding interactions in crystal engineering. The crystal packing of 1 and 2 and their 1,4-dioxane cocrystals is dominated by sp3-C(CN)2⋅⋅⋅O interactions, has significant C⋅⋅⋅O van der Waals overlap (≤0.266 Å) and DFT calculations indicate interaction energies of up to −11.0 kcal mol−1. A cocrystal of 2 with 1,4-thioxane reveals that the cyclopropane synthon prefers interacting with O over S. Computational analyses revealed that the electropositive C2(CN)4 pocket in 1 and 2 can be seen as a strongly directional ‘tetrel-bond donor’, similar to halogen bond or hydrogen bond donors. This disclosure is expected to have implications for the utility of such ‘tetrel bond donors’ in molecular disciplines such as crystal engineering, supramolecular chemistry, molecular recognition and medicinal chemistry.  相似文献   

9.
Three novel isostructural equiatomic gold tetrel pnictides, AuSiAs, AuGeP, and AuGeAs, were synthesized and characterized. These phases crystallize in the noncentrosymmetric (NCS) monoclinic space group Cc (no. 9), featuring square-planar Au within cis-[AuTt2Pn2] units (Tt=tetrel, Si, Ge; Pn=pnictogen, P, As). This is in drastic contrast to the structure of previously reported AuSiP, which exhibits typical linear coordination of Au with Si and P. Chemical bonding analysis through the electron localization function suggests covalent two-center two-electron Tt−Pn bonds, and three-center Au−Tt−Au and Au−Pn−Au bonds with 1.6 e per bond. X-ray photoelectron spectroscopy studies support the covalent and nonionic nature of Au−Pn and Au−Tt bonds. The title materials were found to be n-type narrow-gap semiconductors or semimetals, with nearly temperature-independent electrical resistivities and low thermal conductivities. A combination of the semimetallic properties with tunable NCS structure provides opportunities for the development of materials based on gold tetrel pnictides.  相似文献   

10.
Theoretical studies have been carried out on the halogen bonding interaction between para substituted chlorobenzene (Y C6H4Cl, Y = H, NH2, CH3, F, CN, NO2) and N(CH3)3 using ab initio MP2/aug‐cc‐pVDZ and DFT based wB97XD/6‐311++G(d,p) methods. The positive electrostatic potential (VS,max) on the Cl atom and the heterolytic bond breaking enthalpy of the C Cl bond have been calculated and their role on halogen bonding is discussed. The heterolytic bond breaking enthalpy of the C Cl bond is proposed as a measure of the strength of the σ‐hole on Cl atom. The binding strength of the complexes ranging between −6.13 kJ mol−1 and −9.29 kJ mol−1 are linearly related to the VS,max of the Cl atom and the bond breaking enthalpy of the C Cl bond. In addition, energy decomposition analysis was performed on the halogen bonded complexes via symmetry adapted perturbation theory (SAPT) to predict the dominant energy component and the nature of the N···Cl interaction.  相似文献   

11.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   

12.
Isolated Be2 is a typical example of a weakly bound system, but interaction with other systems may give rise to surprising bonding features. The interactions between Be2 and a set of selected neutral CnHn (n=2–8) π-systems have been analyzed through the use of G4 and G4MP2 ab initio methods, along with multireference CASPT2//CASPT2 calculations. Our results systematically show that the CnHn−Be2−CnHn clusters formed are always very stable. However, the nature of this interaction is completely different when the π-system involved is a closed shell species (n=2, 4, 6, 8), or a radical (n=3, 5, 7). In the first case, the interaction does not occur with the π-system as a whole, but with specific C centers yielding rather polar but strong C−Be bonds. Nonetheless, although the Be−Be distances in these complexes are similar to the ones in compounds with ultra-strong Be−Be bonds, a close examination of their electron density distribution reveals that no Be−Be bonds exist. The situation is totally different when the interaction involves two π-radicals, CnHn−Be2−CnHn (n=3, 5, 7). In these cases, a strong Be−Be bond is formed. Indeed, even though Be is electron deficient, the Be2 moiety behaves as an efficient electron donor towards the two π-radicals, so that the different CnHn−Be2−CnHn (n=3, 5, 7) clusters are the result of the interaction between Be22+ and two L anions. The characteristics of these two scenarios do not change when dealing with bicyclic π-compounds, such as naphthalene and pentalene, because the interaction with the Be2 moiety is localized on one of the unsaturated cycles, the other being almost a spectator.  相似文献   

13.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

14.
In the crystal structure of the title compound, C9H9NO3, there are strong intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds which, together with weak inter­molecular C—H⋯O hydrogen bonds, lead to the formation of infinite chains of mol­ecules. The calculated inter­molecular hydrogen‐bond energies are −11.3 and −2.7 kJ mol−1, respectively, showing the dominant role of the O—H⋯O hydrogen bonding. A natural bond orbital analysis revealed the electron contribution of the lone pairs of the oxazoline N and O atoms, and of the two hydr­oxy O atoms, to the order of the relevant bonds.  相似文献   

15.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

16.
Density functional theory B3LYP method with 6‐31G* basis set has been used to optimize the geometries of the catechin, water and catechin‐(H2O)n complexes. The vibrational frequencies have been studied at the same level to analyze these complexes. Six and eleven stable structures for the catechin‐H2O and catechin‐(H2O)2 have been found, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) have been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are from ?13.27 to ?83.56 kJ/mol. All calculations also indicate that there are strong hydrogen‐bonding interactions in catechin‐water complexes. The strong hydrogen‐bonding contributes to the interaction energies dominantly. The O–H stretching motions in all the complexes are red‐shifted relative to that of the monomer.  相似文献   

17.
We report a porous three-dimensional anionic tetrazolium based CuI−MOF 1 , which is capable of cleaving the N−H bond of ammonia and primary amine, as well as the O−H bond of H2O along with spontaneous H2 evolution. In the gas-solid phase reaction of 1 with ammonia and water vapor, CuI−MOF 1 was gradually oxidized to NH2−CuII−MOF and OH−CuII−MOF, through single-crystal-to-single-crystal (SCSC) structural transformations, which was confirmed by XPS, PXRD and X-ray single-crystal diffraction. Density functional theory (DFT) demonstrated that CuI−MOF could lower N−H bond dissociation free energy of ammonia through coordination-induced bond weakening and promote H2 evolution by the reduction potential of 1 . To our knowledge, this is the first example of MOFs that activate ammonia and amine in gas-solid manner.  相似文献   

18.
Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl, ice-like water clusters form, and H⋅⋅⋅Cl bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.  相似文献   

19.
A multilevel approach that combines high‐level ab initio quantum chemical methods applied to a molecular model of a single, strain‐free Si O Si bridge has been used to derive accurate energetics for Si O bond cleavage. The calculated Si O bond dissociation energy and the activation energy for water‐assisted Si O bond cleavage of 624 and 163 kJ mol−1, respectively, are in excellent agreement with values derived recently from experimental data. In addition, the activation energy for H2O‐assisted Si O bond cleavage is found virtually independent of the amount of water molecules in the vicinity of the reaction site. The estimated reaction energy for this process including zero‐point vibrational contribution is in the range of −5 to 19 kJ mol−1. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
The mutual interplay between pnicogen–π and tetrel bond in the formation of PF3⊥X–Pyr…SiH3CN ternary complexes has been investigated via a computational chemistry at MP2/aug-cc-pVDZ level of theory. We proved by computational NMR data the effect of electron-withdrawing and electron-donating substituents on 1tJ(N-Si) across 15N...35Si tetrel bonds was investigated at M06-2X/aug-cc-pVDZ levels of theory in PF3⊥CN–Pyr…SiH3CN complex. The nature of the interactions has been studied by means of symmetry-adapted perturbation theory (SAPT) and molecular electrostatic potentials (MEP). The electrostatic interaction played a major role in the change of tetrel bond interaction strength in the X–Pyr…SiH3CN binary systems, whereas the change of pnicogen–π strength in the PF3⊥X–Pyr complexes was caused jointly by the dispersion interactions. Energy decomposition indicates that the percentage of the electrostatic term in the tetrel bond system constitutes in the total attractive binding energies, while the percentage of the dispersion term in the pnicogen bonding constitutes in the attractive binding energies. In addition, atoms in molecules (AIM) and natural bond orbital (NBO) analyses were also performed to unveil the mechanism of these interactions in the title complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号