首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T g . In these thin films we find a significant dependence of T g on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.  相似文献   

2.
It has been shown over the last few years that the dynamics close to the glass transition is strongly heterogeneous, both by measuring the diffusion coefficient of tagged particles or by NMR studies. Recent experiments have also demonstrated that the glass transition temperature of thin polymer films can be shifted as compared to the same polymer in the bulk. We propose here first a thermodynamical model for van der Waals liquids, which accounts for experimental results regarding the bulk modulus of polymer melts and the evolution of the density with temperature. This model allows us to describe the density fluctuations in such van der Waals liquids. Then, by considering the thermally induced density fluctuations in the bulk, we propose that the 3D glass transition is controlled by the percolation of small domains of slow dynamics, which allows to explain the heterogeneous dynamics close to T g. We show then that these domains percolate at a lower temperature in the quasi-2D case of thin suspended polymer films and we calculate the corresponding glass transition temperature reduction, in quantitative agreement with experimental results of Jones and co-workers. In the case of strongly adsorbed films, we show that the strong adsorption amounts to enhance the slow domains percolation. This effect leads to 1) a broadening of the glass transition and 2) an increase of T g in quantitative agreement with experimental results. For both strongly and weakly adsorbed films, the shift in T g is given by a power law, the exponent being the inverse of that of the correlation length of 3D percolation. Received 21 March 2000 and Received in final form 4 December 2000  相似文献   

3.
    
In recent years, there have been numerous reports of anomalous behavior of polymers in thin films. These observations, encompassing both structural and dynamical behavior, have attracted a great deal of interest. Measurements showing such anomalous behavior include density (irreversible and reversible changes after annealing below the bulk glass transition temperature), film stability and dewetting, glass transition temperature, diffusion coefficient and chain conformation and relaxation. The lack of a definitive M w dependence in many of these studies means that it is not yet clear if the molecular size is a defining parameter in these observations. Alternatively, the surface to volume ratio may make such systems dependent on the (equally poorly understood) properties of polymer surfaces and interfaces. Despite a growing literature in this area, it is becoming increasingly obvious that a clear understanding of thin film properties has not yet been reached. In particular in glassy thin polymer films a possible cause for the anomalous behavior may originate from sample preparation. The widely used process of spin coating can potentially produce samples that are far from equilibrium. While most studies use thin films that have been annealed above the bulk glass transition, it is not clear if this represents sufficient annealing because the terminal relaxation times may be much larger than typical annealing times. One of the key questions is: Are these deviations from equilibrium important enough to cause any measurable effects? What are the consequences of film preparation and the resulting non-equilibrium conformations of the polymers on measurements of film stability, glass transition temperature, diffusion coefficient, etc.? Alternatively, if these non-equilibrium effects are not responsible for the anomalies observed in the structural and dynamical properties of thin polymer films, then other explanations must be considered. In the search for a unifying concept to explain all aspects simultaneously (i.e., density, film stability, glass transition temperature, ...) and in order to provide a forum for an open and possibly controversial discussion, The European Physical Journal E - Soft Matter invites regular articles and comments on this topic. In addition we invite submission of well-founded conjectures which may be published together with complementary views (solicited by the Editors). Papers to be considered for this special issue should be submitted by August 15, 2001 to the Editorial Office of the European Physical Journal E Véronique Condé, Editorial Office of The European Physical Journal E, Université Paris Sud, batiment 510, 91405 Orsay Cedex, France Tel.: 33 (0)1 69 15 59 76, Fax: 33 (0)1 69 15 59 75, e-mail: conde@edpsciences.org and marked clearly to the attention of either Günter Reiter (Editor) or James Forrest (Guest Editor). We look forward to receiving your submission.[4mm]  相似文献   

4.
Large increases of mobility of local segmental relaxation observed in polymer films as the film thickness is decreased, as evidenced by decreases of the glass temperature, are not found for relaxation mechanisms that have longer length scales including the Rouse relaxation modes and the diffusion of entire polymer chains. We show that the coupling model predictions, when extended to consider polymer thin films, are consistent with a large increase of the mobility of the local segmental motions and the lack of such a change for the Rouse modes and the diffusion of entire polymer chains. There are two effects that can reduce the coupling parameter of the local segmental relaxation in thin films. One is the chain orientation that is induced parallel to the surface when the film thickness h becomes smaller than the end-to-end distance of the chains and the other is a finite-size effect when h is no longer large compared to the cooperative length scale. Extremely thin ( ≈ 1.5 nm) films obtained by intercalating a polymer into layered silicates have thickness significantly less than the cooperative length scale near the bulk polymer glass transition temperature. As a result, the coupling parameter of the local segmental relaxation in such thin films is reduced almost to zero. With this plausible assumption, we show the coupling model can explain quantitatively the large decrease of the local segmental relaxation time found experimentally. Received 1 August 2001 and Received in final form 1 December 2001  相似文献   

5.
  In recent years, there have been numerous reports of anomalous behavior of polymers in thin films. These observations, encompassing both structural and dynamical behavior, have attracted a great deal of interest. Measurements showing such anomalous behavior include density (irreversible and reversible changes after annealing below the bulk glass transition temperature), film stability and dewetting, glass transition temperature, diffusion coefficient and chain conformation and relaxation. The lack of a definitive M w dependence in many of these studies means that it is not yet clear if the molecular size is a defining parameter in these observations. Alternatively, the surface to volume ratio may make such systems dependent on the (equally poorly understood) properties of polymer surfaces and interfaces. Despite a growing literature in this area, it is becoming increasingly obvious that a clear understanding of thin film properties has not yet been reached. In particular in glassy thin polymer films a possible cause for the anomalous behavior may originate from sample preparation. The widely used process of spin coating can potentially produce samples that are far from equilibrium. While most studies use thin films that have been annealed above the bulk glass transition, it is not clear if this represents sufficient annealing because the terminal relaxation times may be much larger than typical annealing times. One of the key questions is: Are these deviations from equilibrium important enough to cause any measurable effects? What are the consequences of film preparation and the resulting non-equilibrium conformations of the polymers on measurements of film stability, glass transition temperature, diffusion coefficient, etc.? Alternatively, if these non-equilibrium effects are not responsible for the anomalies observed in the structural and dynamical properties of thin polymer films, then other explanations must be considered. In the search for a unifying concept to explain all aspects simultaneously (i.e., density, film stability, glass transition temperature, ...) and in order to provide a forum for an open and possibly controversial discussion, The European Physical Journal E - Soft Matter invites regular articles and comments on this topic. In addition we invite submission of well-founded conjectures which may be published together with complementary views (solicited by the Editors). Papers to be considered for this special issue should be submitted by August 15, 2001 to the Editorial Office of the European Physical Journal E Véronique Condé, Editorial Office of The European Physical Journal E, Université Paris Sud, batiment 510, 91405 Orsay Cedex, France Tel.: 33 (0)1 69 15 59 76, Fax: 33 (0)1 69 15 59 75, e-mail: conde@edpsciences.org and marked clearly to the attention of either Günter Reiter (Editor) or James Forrest (Guest Editor). We look forward to receiving your submission.[4mm]  相似文献   

6.
Formulas for the reflection of light from glass (i. e. a dielectric) coated with a thin non-metallic film are generalized for the case of the reflection of light from a metal coated with a thin non-metallic film, e. g. a film of aluminium oxide on aluminium. It is shown how the refractive index and the thickness of the aluminium oxide film on an aluminium mirror can be determined by measurements in polarized light. In conclusion the results of Drude's classical theory of thin non-metallic films on metallic mirrors are compared with the results obtained by the author on the basis of the interference of light in thin films.  相似文献   

7.
The process of spin-coating to fabricate thin polymer films with high molecular weight can produce samples with entanglement concentrations that are far below the equilibrium value. It is not clear whether or not such low entanglement concentrations are responsible for the depression of the glass temperature in thin polymer films. In this work, we measure the calorimetric glass temperature and viscoelastic response of polystyrenes with molecular weights ranging from 3×103 to 43.7×106 g/mol, for both bulk material and for samples freeze-dried from dilute solution. We conclude that the reduction of the glass temperature observed in thin polymer films cannot be due to the reduced entanglement concentration in the samples. Received 15 August 2001 and Received in final form 2 March 2002  相似文献   

8.
Fluorescence intensity measurements of chromophore-doped or -labeled polymers have been used for the first time to determine the effects of decreasing film thickness on glass transition temperature, T g, the relative strength of the glass transition, and the relative rate of physical aging below T g in supported, ultrathin polymer films. The temperature dependence of fluorescence intensity measured in the glassy state of thin and ultrathin films of pyrene-doped polystyrene (PS), poly(isobutyl methacrylate) (PiBMA), and poly(2-vinylpyridine) (P2VP) differs from that in the rubbery state with a transition at T g. Positive deviations from bulk T g are observed in ultrathin PiBMA and P2VP films on silica substrates while substantial negative deviations from bulk T g are observed in ultrathin PS films on silica substrates. The relative difference in the temperature dependences of fluorescence intensity in the rubbery and glassy states is usually reduced with decreasing film thickness, indicating that the strength of the glass transition is reduced in thinner films. The temperature dependence of fluorescence intensity also provides useful information on effects of processing history as well as on the degree of polymer-substrate interaction. In addition, when used as a polymer label, a mobility-sensitive rotor chromophore is demonstrated to be useful in measuring relative rates of physical aging in films as thin as 10 nm. Received 21 August 2001  相似文献   

9.
We report on a far-infrared Fabry Perot filter with high-T c superconductor reflectors that has a high peak-transmission. The filter consists of two plane parallel MgO plates, with the adjacent surfaces coated with YBa2Cu3O7-gd thin films. The resonance frequencies are mainly determined by the distance between the films. We present data for a filter that has for the first order resonance at a frequency of 80 cm–1a quality factor of 55 and a peak-transmissivity of 0.16. The shape of the transmission curve is determined by standing waves between the films and within the plates.  相似文献   

10.
Low surface energy polymer thin-films can be applied to surfaces to increase hydrophobicity and reduce friction for a variety of applications. However, wear of these thin films, resulting from repetitive rubbing against another surface, is of great concern. In this study, we show that highly hydrophobic surfaces with persistent abrasion resistance can be fabricated by depositing fluorinated carbon thin films on sandblasted glass surfaces. In our study, fluorinated carbon thin films were deposited on sandblasted and as-received smooth glass using deep reactive ion etching equipment by only activating the passivation step. The surfaces of the samples were then rubbed with FibrMet abrasive papers in a reciprocating motion using an automatic friction abrasion analyzer. During the rubbing, the static and kinetic friction forces were also measured. The surface wetting properties were then characterized using a video-based contact angle measuring system to determine the changes in water contact angle as a result of rubbing. Assessment of the wear properties of the thin films was based on the changes in the water contact angles of the coated surfaces after repetitive rubbing. It was found that, for sandblasted glass coated with fluorinated carbon film, the water contact angle remained constant throughout the entire rubbing process, contrary to the smooth glass coated with fluorinated carbon film which showed a drastic decrease in water contact angle with the increasing number of rubbing cycles. In addition, the static and kinetic friction coefficients of the sandblasted glass were also much lower than those of the smooth glass.  相似文献   

11.
Tin oxide (SnO2) thin films are prepared by spin coating onto well-cleaned glass substrates using stannous chloride and methanol solution as complexing agent. Films of different thicknesses are annealed at 400° C. Optical properties are studied using UV-Visible spectrophotometer. The films are highly transparent in the visible region. It is found that transmission increases in coated glass (∼92%) than uncoated glass. This may find applications in antireflection coating. Energy band gaps obtained are in the range of 4.10–4.12 eV. Refractive index variation with thickness is also studied and is between 1.77–1.91. The thicknesses of the film are of the order 2300, 3500 and 4800 ?. These results have been discussed in the light of literature.  相似文献   

12.
The smectic order in thin and ultra thin films (150–600Å) of the chiral ferroelectric liquid crystal mixture ZLI-3654 is studied using the X-ray reflectivity technique. The spin cast films on various substrates (float glass, Si wafer, polymer coated glass, etc.) order spontaneously with smectic layering parallel to the substrate surface. A simple model which assumes a sinusoidal density modulation can describe well the experimental reflectivity profiles. The X-ray reflectivity provides a method to evaluate the phases of the structure factor. We demonstrate, for the first time, that is possible to extract the molecular tilt angle, , in ferroelectric liquid crystals from X-ray reflectivity measurements of ultra thin films. The temperature dependence of the tilt angle in the smectic C* phase are almost independent of the film thickness (down to 200 Å) and are similar to those in the bulk.  相似文献   

13.
Abstract

The aim of this paper is the study of transparent undoped zinc oxide thin films obtained by spray pyrolysis technique on glass substrates heated at 350?°C from 0.1 to 0.4?mol solution concentrations using zinc acetate dehydrate as precursor. The X-ray diffraction patterns and Raman spectrometry with respect to Urbach energy and wurtzite structure, show that the maximum value of the high frequency intensity E2 and the optimal value of the optical gap are obtained at 0.2?mol concentration. Furthermore, an appropriate transparency is obtained and that makes these films suitable for photovoltaic windows layer cells.  相似文献   

14.
CuInSe2 thin films with typical 1.0 eV gap energy and tetragonal chalcopyrite structure have been obtained on soda–lime glass substrates by the reaction of sequentially evaporated Cu and In layers with elemental selenium vapor, at 500 °C in flowing Ar. When analogous deposition and reaction processes were performed on Al:ZnO coated glasses, some increment in the band gap energy and diminution in the crystalline interplanar spacings have been detected for the resulting films with an extent that depends on the Cu/In atomic ratio of the evaporated precursor layers. This fact has been related to Zn incorporation into the selenized film, with quaternary (CuIn)1−xZn2xSe2 compound formation that is influenced by the presence of copper selenide phases during the reaction process. Such deductions are supported by the optical, structural and compositional characterizations that have been performed comparatively on samples prepared by selenization of evaporated metallic precursors with two different Cu/In ratios (0.9 and 1.1) on bare and Al:ZnO coated glass substrates.  相似文献   

15.
(100) Oriented (PbxSr1−x)TiO3 (PST) thin films were prepared on indium tin oxide coated glass substrates by sol–gel technique with rapid thermal processing. The dielectric permittivity and tunability of the thin films with different dispersion degrees of orientation were investigated in detail by characterizing the full width at half maximum of their (100) peak based on rocking curves at different annealing temperatures. Influence of orientation dispersion on dielectric properties was exhibited in the tunable dielectric thin films. It shows that the dielectric constant and hence the tunability of the sol–gel derived PST thin films are improved with the decrease in the dispersion degree of orientation of the perovskite phase other than the increase in the content of crystalline phase in the thin films. The dielectric constant (capacitance) and figure of merit of the oriented thin films are 3–6 times and 1 times higher than that of randomly oriented thin film respectively.  相似文献   

16.
Al or Sn doped ZnO films were deposited by spray pyrolysis using aqueous solutions. The films were deposited on either indium tin oxide coated or bare glass substrates. ZnCl2, AlCl3 and SnCl2 were used as precursors. The effect of ZnCl2 molar concentration (0.1-0.3 M) and doping percentage (2-4% AlCl3 or SnCl2) have been investigated. The main goal of this work being to grow porous ZnO thin films, small temperature substrates (200-300 °C) have been used during the spray pyrolysis deposition. It is shown that, if the X-ray diffraction patterns correspond to ZnO, the films deposited onto bare glass substrate are only partly crystallized while those deposited onto ITO coated glass substrate exhibit better crystallization. The homogeneity of the films decreases when the molar concentration of the precursor increases, while the grain size and the porosity decrease when the Al doping increases. The optical study shows that band tails are present in the absorption spectrum of the films deposited onto bare glass substrate, which is typical of disordered materials. Even after annealing 4 h at 400 °C, the longitudinal resistivity of the films is quite high. This result is attributed to the grain boundary effect and the porosity of the films. Effectively, the presence of an important reflection in the IR region in samples annealed testifies of a high free-carriers density in the ZnO crystallites. Finally it is shown that when deposited in the same electrochemical conditions, the transmission of a polymer film onto the rough sprayed ZnO is smaller than that onto smooth sputtered ZnO.  相似文献   

17.
This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I–V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.  相似文献   

18.
The molecular dynamics in thin films (18 nm-137 nm) of isotactic poly(methyl methacrylate) (i-PMMA) of two molecular weights embedded between aluminium electrodes are measured by means of dielectric spectroscopy in the frequency range from 50 mHz to 10 MHz at temperatures between 273 K and 392 K. The observed dynamics is characterized by two relaxation processes: the dynamic glass transition (α-relaxation) and a (local) secondary β-relaxation. While the latter does not depend on the dimensions of the sample, the dynamic glass transition becomes faster (≤2 decades) with decreasing film thickness. This results in a shift of the glass transition temperature T g to lower values compared to the bulk. With decreasing film thickness a broadening of the relaxation time distribution and a decrease of the dielectric strength is observed for the α-relaxation. This enables to deduce a model based on immobilized boundary layers and on a region displaying a dynamics faster than in the bulk. Additionally, T g was determined by temperature-dependent ellipsometric measurements of the thickness of films prepared on silica. These measurements yield a gradual increase of T g with decreasing film thickness. The findings concerning the different thickness dependences of T g are explained by changes of the interaction between the polymer and the substrates. A quantitative analysis of the T g shifts incorporates recently developed models to describe the glass transition in thin polymer films. Received 12 August 2001 and Received in final form 16 November 2001  相似文献   

19.
Motivated by recent experiments, we examine within a percolation model whether there is a quantitative equivalence in the glass transition temperatures of polymer thin films and polymer nanocomposites. Our results indicate that, while the qualitative behaviors of these systems are similar, a quantitative equivalence cannot be established in general. However, we propose a phenomenological scaling collapse of our results which suggests a simple framework by which the results of the thin films may be used to quantitatively predict the properties of polymer nanocomposites.  相似文献   

20.
Very thin ZrO 2 films (few nanometers) have been prepared by sol-gel process. These films were deposited onto a stack of a thin silver layer evaporated on a glass substrate for Surface Plasmons Resonance (SPR) experiments. The first aim of this work is to study the high densification of the sol-gel films followed by the refractive index and thickness accurate measurements at each step of the annealing procedure, using an optical set-up based on SPR. Secondly, SPR excitation coupled with micro-Raman experiment has also been performed to determine the thin films structure depending on layer thickness. Finally, Conventional Transmission Electron Microscopy (CTEM) and High Resolution (HRTEM) studies have been conducted to check and complete Raman spectroscopy results. A discussion compares the optical results and the Transmission Electron Microscopy observations and shows that ultra thin layers structure is strongly depends on films thickness. Received 14 May 2001 and Received in final form 2 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号