首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of natural products capable of affording protection against UVB radiation-induced inflammatory responses and generation of oxidative stress may have important human health implications. The UVB exposure-induced skin injury and oxidative stress has been associated with a variety of skin disease conditions including photoaging, inflammation and cancer. Tea is a popular beverage consumed worldwide. In several mouse skin models, topical application as well as oral consumption of green tea has been shown to afford protection against chemical and UVB-induced carcinogenesis and inflammatory responses. In the present study, we investigated in human skin, whether topical application of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent in green tea, inhibits UVB-induced infiltration of leukocytes (macrophage/neutrophils), a potential source of generation of reactive oxygen species (ROS), and generation of prostaglandin (PG) metabolites. Human subjects were UVB irradiated on sun-protected skin to four times their minimal erythema dosage (MED) and skin biopsies or keratomes were obtained either 24 h or 48 h later. We found that topical application of EGCG (3 mg/2.5 cm2) before UVB (4 MED) exposure to human skin significantly blocked UVB-induced infiltration of leukocytes and reduced myeloperoxidase activity. These infiltrating leukocytes are considered to be the major source of generation of ROS. In the same set of experiments we found that topical application of EGCG before UVB exposure decreased UVB-induced erythema. In additional experiments, we found that microsomes from EGCG pretreated human skin and exposed to UVB, compared to UVB exposure alone, produced significantly reduced PG metabolites, particularly PGE2. The PG metabolites play a critical role in free radical generation and skin tumor promotion in multistage skin carcinogenesis. Careful microscopic examination of skin sections, stained with hematoxylin and eosin, under higher magnification (x400) also revealed that EGCG pretreated and UVB-exposed human skin contained fewer dead cells in the epidermis with comparison to nonpretreated UVB-exposed skin. Taken together, our data demonstrate that EGCG has the potential to block the UVB-induced infiltration of leukocytes and the subsequent generation of ROS in human skin. This may explain the possible mechanism involved in anti-inflammatory effects of green tea. We suggest that EGCG may be useful as a topical agent for protection against UVB-induced ROS-associated inflammatory dermatoses, photoaging and photocarcinogenesis. Further studies are warranted in this direction.  相似文献   

2.
Abstract— Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a poly-phenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280–320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. Topical application of GTP (1–6 mg/animal), 30 min prior to or 30 min after exposure to a single dose of UVB (2 kj/m2) resulted in significant protection against local (25–90%) and systemic suppression (23–95%) of CHS and inflammation in mouse dorsal skin (70–80%). These protective effects were dependent on the dose of GTP employed; increasing the dose (1–6 mg/animal) resulted in an increased protective effect (25–93%). The protective effects were also dependent on the dose of UVB (2–32 kJ/m2). Among the four major epicatechin derivatives present in GTP, (‐)-epigallocatechin-3-gallate, the major constituent in GTP, was found to be the most effective in affording protection against UVB-caused CHS and inflammatory responses. Our study suggests that green tea, specifically polyphenols present therein, may be useful against inflammatory dermatoses and immunosuppression caused by solar radiation.  相似文献   

3.
In prior studies we and others have shown that oral feeding of a polyphenolic fraction isolated from green tea (GTP) or water extract of green tea affords protection against ultraviolet B (UVB) radiation-induced carcinogenesis in SKH-1 hairless mice (Wang et al., Carcinogenesis 12, 1527–1530, 1991). It is known that exposure of murine skin to UVB radiation results in cutaneous edema, depletion of the antioxidant-defense system and induction of ornithine decarboxylase (ODC) and cyclooxygenase activities. In this study we assessed the protective effect of GTP on these UVB radiation-caused changes in murine skin. Oral feeding of 0.2% GTP (wt/vol) as the sole source of drinking water for 30 days to SKH-1 hairless mice followed by irradiation with UVB (900 mJ/cm2) resulted in significant protection against UVB radiation-caused cutaneous edema ( P <0.0005) and depletion of the antioxidant-defense system in epidermis ( P <0.01–0.02). The oral feeding of GTP also resulted in significant protection against UVB radiation-caused induction of epidermal ODC ( P <0.005–0.01) and cyclooxygenase activities ( P <0.0001) in a time-dependent manner. Our data indicate that the inhibition of UVB radiation-caused changes in these markers of tumor promotion in murine skin by GTP may be one of the possible mechanisms of chemopreventive effects associated with green tea against UVB-induced tumorigenesis. The results of this study suggest that green tea, specifically polyphenols present therein, may be useful against inflammatory responses associated with the exposure of skin to solar radiation.  相似文献   

4.
Green tea chemoprevention has been a focus of recent research, as a polyphenolic fraction from green tea (GTP) has been suggested to prevent UV radiation-induced skin cancer. Recently, it was demonstrated that GTP reduced the risk for skin cancer in a murine photocarcinogenesis model. This was accompanied by a reduction in UV-induced DNA damage. These effects appeared to be mediated via interleukin (IL)-12, which was previously shown to induce DNA repair. Therefore, we studied whether GTP induction of IL-12 and DNA repair could also be observed in human cells. KB cells and normal human keratinocytes were exposed to GTP 5 h before and after UVB. UVB-induced apoptosis was reduced in UVB-exposed cells treated with GTP. GTP induced the secretion of IL-12 in keratinocytes. The reduction in UV-induced cell death by GTP was almost completely reversed upon addition of an anti-IL-12-antibody, indicating that the reduction of UV-induced cell death by GTP is mediated via IL-12. The ability of IL-12 to reduce DNA damage and sunburn cells was confirmed in "human living skin equivalent" models. Hence the previously reported UV-protective effects of GTP appear to be mediated in human cells via IL-12, most likely through induction of DNA repair.  相似文献   

5.
The UVB (280-315 nm)- and UVA1 (340-400 nm)-induced migration of Langerhans cells (LC) from the epidermis and accumulation of dendritic cells (DC) in the lymph nodes draining the exposed skin site of C3H/HeN mice have been investigated. One minimum erythemal dose (MED) of UVB (1.5 kJ/m2) and of UVA1 (500 kJ/m2) were chosen, which have been shown previously to suppress delayed hypersensitivity (DTH). UVB irradiation resulted in a reduction in epidermal LC numbers, local to the site of the exposure, which was most apparent 12 h after exposure, but, in contrast, UVA1 had no significant effect even at 72 h after exposure. UVA1 did not exert any protection against the UVB-mediated depletion in LC numbers. The reduction in local LC following UVB exposure was prevented by systemic (intraperitoneal) treatment of mice with neutralising antibodies to either tumor necrosis factor (TNF)-alpha or interleukin (IL)-beta 2 h prior to the irradiation. It has been reported previously that UVB exposure caused an increase in the number of dendritic cells (DC) in the lymph nodes draining the irradiated skin site. In the present study we have shown that UVA1 had a similar effect. Pretreatment of the mice with neutralising antibodies to IL-1beta (by intraperitoneal injection) substantially inhibited DC accumulation induced by both UV regimens. However, anti-TNF-alpha antibodies affected only the UVB-induced increase, and did not alter the elevation in DC numbers observed following UVA1 exposure. These results indicate that UVB causes the migration of LC from the epidermis and an accumulation of DC in the draining lymph nodes by a mechanism that requires both TNF-alpha and IL-1beta. In contrast, UVAI does not cause LC migration from the epidermis and the accumulation of DC in the draining lymph nodes observed following UVA1 exposure requires IL-1beta, but not TNF-alpha. It is likely therefore that UVA1 acts through a different mechanism from UVB and may target a cutaneous antigen presenting cell other than LC, such as the dermal DC.  相似文献   

6.
Exposure of certain strains of mice to ultraviolet radiation (UVR) causes suppression of some innate and adaptive immune responses. One such consequence of acute UVB exposure is a reduction in the number of Langerhans cells (LC) in the epidermis and an increase in dendritic cells (DC) in lymph nodes draining the irradiated skin sites. Exposure to chronic UVB irradiation also has effects on the immune system, but it is unknown what effects are caused by repeated doses of solar simulated radiation (SSR). Consequently, the main aims of the present study were to determine whether repeated exposure to low doses of SSR would lead to similar changes in these cell populations and whether chronic doses of SSR activate a protective photoadaptation mechanism. Groups of C3H/HeN mice were irradiated daily with 3.7 J/cm(2) SSR from Cleo Natural lamps for 2, 10, 20, 30 or 60 days. Further groups of mice received an additional dose of 7.4 J/cm(2) SSR on days 2, 10, 30 or 60 to test for photoadaptation. The numbers of LC in the epidermis and DC in the lymph nodes draining irradiated skin sites were counted 24 h after the final irradiation. With the exception of mice irradiated for only 2 days, LC were significantly reduced throughout the chronic irradiation protocol, and no recovery occurred. DC numbers were significantly increased in the draining lymph nodes of mice irradiated for 20 days and 60 days.  相似文献   

7.
In previous studies, we showed that green tea and black tea extracts and their major polyphenolic constituents protect against UVB light-induced carcinogenesis in murine skin. All of these studies required chronic administration of tea extracts or specific constituents either topically or orally. However, it is not known whether acute or subchronic administration of black tea extracts or constituents can ameliorate UVB-induced early effects in skin. In the present study, cultured keratinocytes and mouse and human skin were employed to assess the effect of both oral and topical administration of standardized black tea extract (SBTE) and its two major polyphenolic subfractions namely BTF1 and BTF2 against UVB-induced photodamage. In SKH-1 hairless mice, topical application of SBTE (0.2 mg/cm2) prior to UVB exposure (180 mJ/cm2) resulted in 40% reduced incidence and 64% reduced severity of erythema and 50% reduction in skinfold thickness by day 6 when compared to nontreated UVB-exposed animals. The SBTE was also effective in protecting against UVB-induced erythema in human volunteers. Administration of SBTE 5 min after UVB irradiation was similarly effective in reducing UVB-induced inflammation in both murine and human skin. The major polyphenolic subfractions, BTF1 and BTF2, were also effective in protecting in mouse skin. The SBTE subfractions inhibited UVB-induced tyrosine phosphorylation of epidermal growth factor receptor (EGFR). The UVB irradiation of human epidermoid carcinoma cells resulted in 3.3-fold induction of tyrosine phosphorylation of EGFR. Pretreatment with BTF1 and BTF2 reduced tyrosine phosphorylation of EGFR by 53% and 31%, respectively. The UVB-mediated enhanced expression of the early response genes, c-fos and c-jun in human epidermal keratinocytes was reduced in a dose-dependent manner by SBTE. Topical application of SBTE was also effective in reducing accumulation of c-fos and p53 proteins by 82% and 78%, respectively, in UVB-exposed mouse skin. These data provide evidence that constituents of black tea can abrogate UVB-induced erythema and associated early events in murine and human skin.  相似文献   

8.
Oral administration of green tea or caffeine to SKH-1 mice during UVB irradiation for several months inhibited the formation of skin cancer. Similar effects were observed when green tea or caffeine was given to tumor-free UVB-initiated mice with a high risk of developing skin tumors in the absence of further UVB irradiation (high risk mice). Mechanistic studies indicated that topical application of caffeine stimulated UVB-induced apoptosis as well as apoptosis in UVB-induced focal hyperplasia and tumors in tumor-bearing mice. Oral or topical administration of caffeine enhanced the removal of patches of epidermal cells with a mutant form of p53 protein that appeared early during the course of UVB-induced carcinogenesis, and oral administration of caffeine altered the profile of p53 mutations in the patches. In additional studies, topical application of caffeine was shown to have a sunscreen effect, and topical application of caffeine sodium benzoate was more active than caffeine as a sunscreen and for stimulating UVB-induced apoptosis. Caffeine sodium benzoate was also highly active in inhibiting carcinogenesis in UVB-pretreated high risk mice. Our studies indicate that caffeine and caffeine sodium benzoate may be useful as novel inhibitors of sunlight-induced skin cancer.  相似文献   

9.
For more than 25 years it is known that UV radiation, in particular the UVB range suppresses the immune system. In contrast to conventional immunosuppression by immunosuppressive drugs, UV radiation does not compromise the immune system in a general but rather in an antigen-specific fashion via induction of immunotolerance. This effect is mostly mediated via regulatory T cells (Treg) induced by UV. Several subtypes of UV-induced Treg may exist, the best characterized are those which inhibit contact hypersensitivity. Induction of these Tregs by UV radiation is an active process which requires antigen presentation by UV-damaged but still alive Langerhans cells (LC) in the lymph nodes. UV-induced Treg have recently been characterized as expressing CD4 and CD25 and as releasing upon activation the immunosuppressive cytokine interleukin (IL)-10. Once activated in an antigen-specific manner, they suppress immune responses in a general fashion via the release of IL-10, a phenomenon called bystander suppression. The further phenotypic and functional characterization of these cells will not only contribute to a better understanding of the impact of UV radiation on the immune system but will also determine whether they can be applied in the future therapeutically with the final aim of achieving specific immunosuppression.  相似文献   

10.
It is well known that ultraviolet (UV) radiation induces erythema, immunosuppression and carcinogenesis. We hypothesized that chronic exposure to solar UV radiation induces adaptation that eventually prevents the suppression of acquired immunity. We studied adaptation for UV-induced immunosuppression after chronic exposure of mice to a suberythemal dose of solar simulated radiation (SSR) with Cleo Natural lamps, and subsequent exposure to an immunosuppressive dose of solar or UVB radiation (TL12). After UV dosing, the mice were sensitized and challenged with either diphenylcyclopropenone (DPCP) or picryl chloride (PCl). To assess the adaptation induced by solar simulated radiation, we measured the proliferative response and cytokine production of skin-draining lymph node cells after immunization to DPCP, the contact hypersensitivity (CHS) response to PCl, and thymine-thymine (T-T) cyclobutane dimers in the skin of mice. After induction of immunosuppression by SSR or by TL12 lamps, the proliferative response of draining lymph node cells after challenge with DPCP, or the CHS after challenge with PCl, showed significant suppression of the immune response. Chronic irradiation from SSR preceding the immunosuppressive dose of UV failed to restore the suppressed immune response. Reduced lipopolysaccharide-triggered cytokine production (of IL-12p40, IFN-gamma, IL-6 and TNF-alpha) by draining lymph node cells of mice sensitized and challenged with DPCP indicated that no adaptation is induced. In addition, the mice were not protected from T-T dimer DNA damage after chronic solar irradiation. Our studies reveal no evidence that chronic exposure to low doses of SSR induces adaptation to UV-induced suppression of acquired immunity.  相似文献   

11.
Ultraviolet (UV) radiation is a major cause of skin photoaging through generating excessive oxidative stress and inflammation. One of the strategies is to use photo-chemoprotectors, such as natural products with antioxidant and anti-inflammatory properties, to protect the skin from photo damage. The present study investigates the photoprotective potentials of topical administration of unhydrolyzed collagen, epigallocatechin gallate (EGCG), and their combination against ultraviolet B (UVB)-induced photoaging in nude mice. It is found that both the solo and combined pretreatments could recover UVB-induced depletion of antioxidative enzymes, including superoxide dismutase and glutathione peroxidase (GSH-Px), as well as an increase of lipid peroxide malondialdehyde and inflammatory tumor necrosis factor-α. Meanwhile, the UVB-stimulated skin collagen degradation is attenuated significantly with drug treatments, which is evidenced by expression analysis of matrix metalloproteinase-1 and hydroxyproline. Additionally, the mouse skin histology shows that the drug-pretreated groups possess decreased epidermis thickness and normal collagen fiber structure of the dermis layer. These results demonstrate that both EGCG and collagen can protect the skin against UVB-induced skin photoaging. Synergistically, the combination of them shows the maximum prevention to skin damage, showing its potential in the application of anti-photoaging formulation products.  相似文献   

12.
There has been considerable interest in the use of botanical supplements to protect skin from the adverse effects of solar UV radiation, including photocarcinogenesis. We and others have shown that topical application of (-)-epigallocatechin-3-gallate (EGCG) from green tea prevents photocarcinogenesis in mice; however, the chemopreventive mechanism of EGCG in an in vivo tumor model is not clearly understood. In this study, UV-B-induced skin tumors with and without treatment of EGCG ( approximately 1 mg/cm(2)) and age-matched skin biopsies from SKH-1 hairless mice were used to identify potential molecular targets of skin cancer prevention by EGCG. These biopsies were analyzed for various biomarkers of angiogenesis and antitumor immune response using immunostaining, Western blotting and gelatinolytic zymography. We report that compared to non-EGCG-treated tumors, topical application of EGCG in UV-induced tumors resulted in inhibition of protein expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, which play crucial roles in tumor growth and metastasis. In contrast, tissue inhibitor of MMP-1 (TIMP-1), which inhibits MMP activity, was increased in tumors. With respect to the tumor vasculature, EGCG decreased the expression of CD31, a cell surface marker of vascular endothelial cells, and inhibited the expression of vascular endothelial growth factor in tumors, which are essential for angiogenesis. EGCG inhibited proliferating cell nuclear antigen in UV-B-induced tumors as well. Additionally, higher numbers of cytotoxic T lymphocytes (CD8(+) T cells) were detected in EGCG-treated tumors compared with non-EGCG-treated tumors. Together, these in vivo tumor data suggested that inhibition of photocarcinogenesis in mice by EGCG is associated with inhibition of angiogenic factors and induction of antitumor immune reactivity.  相似文献   

13.
Abstract— Ultraviolet light has been identified as the major carcinogen in skin cancer and the p53 tumor suppressor gene is a major target for UV-induced mutations. The mutations are probably caused by unrepaired UV-induced cyclobutane pyrimidine dimers (CPD) and possibly by the less frequent pyrimidine (6-4) pyrimidone photoproducts. While hot spots for p53 mutations in human nonmela-noma skin tumors correspond quite well to slow spots for CPD repair in cultured cells irradiated with the model mutagen 254 nm UVC (which is not present in terrestrial sunlight), they do not all coincide with sequences that are initially frequently damaged by 254 nm UVC. Using LMPCR (ligation-mediated polymerase chain reaction), we show that environmentally relevant UVB light induces CPD at CC and PyrmC positions much more frequently than does UVC light, and that all eight skin cancer hot spots in p53 are also hot spots for UVB-induced CPD. Our results show that methylation of dipyrimidine sites (PyrmCpG) is associated with an increase rate of CPD formation upon UVB irradiation. Consequently, DNA methylation may increase the mutagenic potential of UVB and explains that several p53 mutation hot spots are found at PyrmCpG. The distribution patterns of CPD formation and the photofootprint patterns found along exons 5 and 6 of p53 gene are suggestive of DNA folding into nucleosomes.  相似文献   

14.
Inflammatory stimuli result in the production of cutaneous eicosanoids, which are known to contribute to the process of tumor promotion. Cyclooxygenase (COX), the rate-limiting enzyme for the production of prostaglandins (PG) from arachidonic acid, exists in at least two isoforms, COX-1 and COX-2. COX-1 is constitutively expressed in most tissues and plays various physiological roles, whereas increased COX-2 expression is known to occur in several types of epithelial neoplasms. Enhanced PG synthesis is a potential contributing factor in UVB-induced nonmelanoma skin cancers (NMSC). Increased COX-2 staining occurs in murine skin neoplasms after chronic exposure to carcinogenic doses of UVB. In this study, immunohistochemical and Western blot analyses were employed to assess longitudinally COX-2 expression in a standard mouse UVB complete carcinogenesis protocol and in human basal cell carcinomas (BCC) and squamous cell carcinomas (SCC). During UVB irradiation of mice, COX-2 expression consistently increased in the hyperplastic skin, the benign papillomas and the SCC. COX-2 expression was also increased in human actinic keratoses, SCC and BCC as well as in murine SCC and BCC. The pattern of COX-2 expression was quite variable, occurring in a patchy distribution in some lesions with staining confined mainly to suprabasal cell layers. In general, COX-2 expression progressively became more extensive in benign papillomas and well-differentiated murine SCC. The staining was predominantly cytoplasmic and perinuclear in some focal areas in tissue stroma around both murine and human tumors. Western blot analysis confirmed negative COX-2 expression in normal skin, whereas acute UVB exposure resulted in increased enzyme expression, which continued to increase in developing papillomas and SCC. Because of the evidence indicating a pathogenic role for eicosanoids in murine and human skin neoplasms, we performed studies to assess the anti-inflammatory and anticarcinogenic effects of green tea extracts, which are potent antioxidants. Acute exposure of the human skin to UVB (minimum erythema dose x 4) caused a transient enhancement of the COX-2 expression, which reverted to baseline within hours; however, in murine skin the expression persisted for several days. Pretreatment with the topically applied green tea extract (1 mg/cm2) largely abrogated the acute COX-2 response to UVB in mice or humans. In summary, enhanced COX-2 expression serves as a marker of epidermal UVB exposure for murine and human NMSC. These results suggest that COX-2 inhibitors could have potent anticarcinogenic effects in UVB-induced skin cancer.  相似文献   

15.
Immunosuppressive doses of solar-simulated UV radiation activate lymph node B cells that can suppress primary immunity by inhibiting the function of dendritic cells. The aim of this study was to determine the waveband responsible for activation of these suppressor B cells. We exposed C57BL/6 mice to various doses of either UVA or UVB radiation and analyzed the number and activation state of lymph node antigen-presenting cells (APC). Immunosuppressive doses of UVB but not UVA activated B cells as assessed by major histocompatibility complex II (MHC II) expression and doubled their numbers in draining lymph nodes. Higher doses of UVA that were not immunosuppressive actually suppressed B cell activation. Our results show that UVA and UVB suppress systemic immunity via different mechanisms. Lymph node B cells are activated in response to immunosuppressive doses of UVB but not UVA. Thus, the activation state of lymph node APC appears to be important for UV immunomodulation.  相似文献   

16.
Many naturally occurring agents are believed to protect against UV-induced skin damage. In this study, we have investigated the effects of naringenin (NG), a naturally occurring citrus flavonone, on the removal of UVB-induced cyclobutane pyrimidine dimers (CPD) from the genome and apoptosis in immortalized p53-mutant human keratinocyte HaCaT cells. The colony-forming assay shows that treatment with NG significantly increases long-term cell survival after UVB irradiation. NG treatment also protects the cells from UVB-induced apoptosis, as indicated by the absence of the 180 base pair DNA ladders and the appearance of sub-G1 peak using agarose gel electrophoresis and flow cytometric analysis, respectively. The UVB-induced poly (ADP-ribose) polymerase-1 (PARP-1) cleavage, caspase activation and Bax/Bcl2 ratio were modulated following NG treatment, indicating an antiapoptotic effect of NG in UVB-damaged cells that occurs at least in part via caspase cascade pathway. Moreover, treatment of UVB-irradiated HaCaT cells with NG enhances the removal of CPD from the genome, as observed by both direct quantitation of CPD in genomic DNA and immuno-localization of the damage within the nuclei. The study provides a molecular basis for the action of NG as a promising natural flavonoid in preventing skin aging and carcinogenesis.  相似文献   

17.
Ultraviolet light exposure can impair immune responses that are not restricted to the exposed skin but is also found at other sites, i.e. systemic immunosuppression. Therefore, we investigated the UV-induced modulating effects on vaccination against hepatitis B in a mouse model. Two different mouse strains, BALB/c and C57B1/ 6, were vaccinated intramuscularly against hepatitis B. Mice were exposed to different doses of ultraviolet B (UVB) for five consecutive days on shaved back skin before the vaccination. Vaccination against hepatitis B induced cellular (delayed-type hypersensitivity [DTH] and lymphocyte stimulation test) as well as humoral immune responses in both mouse strains. The DTH responses in C57BB1/6 mice were statistically significantly higher compared with BALB/c mice. UVB exposure induced a dose-dependent suppression of cellular immunity in both strains of mice. C57B1/6 mice seemed to be more susceptible to this suppression. Anti-hepatitis B surface antibodies (total-Ig) were only marginally suppressed after UVB exposure. IgG2a and interferon-gamma levels, both indicators for Th1 immune response, were suppressed in both mouse strains after UVB exposure. In summary, UVB exposure induced a dose-dependent suppression of both cellular and humoral immune responses after hepatitis B vaccination, although the suppressive effects on humoral immunity were limited to IgG2a production. Susceptibility to UVB-induced immunomodulation depended on the strain of mice and their predilection for developing different T cell responses.  相似文献   

18.
Ultraviolet B (UVB) irradiation may induce the acceleration of skin aging. The purpose of this study was to develop an effective formulation containing tannase-converted green tea extract (FTGE) to inhibit UVB-induced oxidative damage. Significant (p < 0.05) prevention of the reduced form of glutathione (GSH) depletion was observed in mice treated with FTGE. The hydrogen peroxide levels of mice treated with FTGE were similar to those of UVB non-irradiated mice. No significant difference was observed between No UVB control and FTGE mice. Also, mice treated with FTGE had significant (p < 0.05) decreases in thiobarbituric acid-reactive substance levels by lipid peroxidation compared with No UVB control mice. Our data suggest that this formulation may be effective in protecting skin from UVB photodamage.  相似文献   

19.
Biological consequences of cyclobutane pyrimidine dimers.   总被引:2,自引:0,他引:2  
In the skin many molecules may absorb ultraviolet (UV) radiation upon exposure. In particular, cellular DNA strongly absorbs shorter wavelength solar UV radiation, resulting in various types of DNA damage. Among the DNA photoproducts produced the cyclobutane pyrimidine dimers (CPDs) are predominant. Although these lesions are efficiently repaired in the skin, this CPD formation results in various acute effects (erythema, inflammatory responses), transient effects (suppression of immune function), and chronic effects (mutation induction and skin cancer). The relationships between the presence of CPD in skin cells and the subsequent biological consequences are the subject of the present review.  相似文献   

20.
People can expose their oral cavities to UV (290–400 nm) by simply opening their mouths while outdoors. They can also have their oral cavities exposed to UV indoors to different UV‐emitting devices used for diagnoses, treatments and procedures like teeth whitening. Because the World Health Organization declared UV radiation as a complete human carcinogen in 2009, we asked if oral tissues are at a similar or higher carcinogenic risk compared to skin tissue. To understand the UVB (290–320 nm)‐related carcinogenic risks to these tissues, we measured initial DNA damage in the form of cyclobutane pyrimidine dimers (CPD), the repair rate of CPD (24 h) and the number of apoptotic dead cells over time resulting from increasing doses of erythemally weighted UV radiation. We used commercially available 3D‐engineered models of human skin (EpiDerm?), gingival (EpiGingival?) and oral (EpiOral?) tissues and developed an analytical approach for our tri‐labeling fluorescent procedure to identify total DNA, CPD and apoptotic cells so we can simultaneously quantify DNA repair rates and dead cells. Both DNA repair and apoptotic cell numbers are significantly lower in oral cells compared with skin cells. The combined results suggest UVB‐exposed oral tissues are at a significantly higher carcinogenic risk than skin tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号