首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Let \(\alpha \) and \(\beta \) be irrational real numbers and \(0<\varepsilon <1/30\). We prove a precise estimate for the number of positive integers \(q\le Q\) that satisfy \(\Vert q\alpha \Vert \cdot \Vert q\beta \Vert <\varepsilon \). If we choose \(\varepsilon \) as a function of Q, we get asymptotics as Q gets large, provided \(\varepsilon Q\) grows quickly enough in terms of the (multiplicative) Diophantine type of \((\alpha ,\beta )\), e.g., if \((\alpha ,\beta )\) is a counterexample to Littlewood’s conjecture, then we only need that \(\varepsilon Q\) tends to infinity. Our result yields a new upper bound on sums of reciprocals of products of fractional parts and sheds some light on a recent question of Lê and Vaaler.  相似文献   

2.
We study in a unified way the \((\alpha ,\varepsilon )\)-structures of general natural lift type on the tangent bundle of a Riemannian manifold. We characterize the general natural \(\alpha \)-structures on the total space of the tangent bundle of a Riemannian manifold, and provide their integrability conditions (the base manifold is a space form and some involved coefficients are rational functions of the other ones). Then, we characterize the two classes (with respect to the sign of \(\alpha \varepsilon \)) of \((\alpha ,\varepsilon )\)-structures of general natural type on TM. The class \(\alpha \varepsilon =-1\) is characterized by some proportionality relations between the coefficients of the metric and those of the \(\alpha \)-structure, and in this case, the structure is almost Kählerian if and only if the first proportionality factor is the derivative of the second one. Moreover, the total space of the tangent bundle is a Kähler manifold if and only if it depends on three coefficients only (two coefficients of the integrable \(\alpha \)-structure and a proportionality factor).  相似文献   

3.
In this paper, we study a special class of Finsler metrics, \((\alpha ,\beta )\)-metrics, defined by \(F=\alpha \phi (\beta /\alpha )\), where \(\alpha \) is a Riemannian metric and \(\beta \) is a 1-form. We find an equation that characterizes Ricci-flat \((\alpha ,\beta )\)-metrics under the condition that the length of \(\beta \) with respect to \(\alpha \) is constant.  相似文献   

4.
Let \(({\mathcal M},g)\) be a smooth compact Riemannian manifold of dimension \(N\ge 2\). We prove the existence of a family \((\Omega _\varepsilon )_{\varepsilon \in (0,\varepsilon _0)}\) of self-Cheeger sets in \(({\mathcal M},g)\). The domains \(\Omega _\varepsilon \subset {\mathcal M}\) are perturbations of geodesic balls of radius \(\varepsilon \) centered at \(p \in {\mathcal M}\), and in particular, if \(p_0\) is a non-degenerate critical point of the scalar curvature of g, then the family \((\partial \Omega _\varepsilon )_{\varepsilon \in (0,\varepsilon _0)}\) constitutes a smooth foliation of a neighborhood of \(p_0\).  相似文献   

5.
We consider high frequency samples from ergodic Lévy driven stochastic differential equation with drift coefficient \(a(x,\alpha )\) and scale coefficient \(c(x,\gamma )\) involving unknown parameters \(\alpha \) and \(\gamma \). We suppose that the Lévy measure \(\nu _{0}\), has all order moments but is not fully specified. We will prove the joint asymptotic normality of some estimators of \(\alpha \), \(\gamma \) and a class of functional parameter \(\int \varphi (z)\nu _0(dz)\), which are constructed in a two-step manner: first, we use the Gaussian quasi-likelihood for estimation of \((\alpha ,\gamma )\); and then, for estimating \(\int \varphi (z)\nu _0(dz)\) we make use of the method of moments based on the Euler-type residual with the the previously obtained quasi-likelihood estimator.  相似文献   

6.
We study various classes of maximality principles, \(\mathrm {MP}(\kappa ,\Gamma )\), introduced by Hamkins (J Symb Log 68(2):527–550, 2003), where \(\Gamma \) defines a class of forcing posets and \(\kappa \) is an infinite cardinal. We explore the consistency strength and the relationship of \(\textsf {MP}(\kappa ,\Gamma )\) with various forcing axioms when \(\kappa \in \{\omega ,\omega _1\}\). In particular, we give a characterization of bounded forcing axioms for a class of forcings \(\Gamma \) in terms of maximality principles MP\((\omega _1,\Gamma )\) for \(\Sigma _1\) formulas. A significant part of the paper is devoted to studying the principle MP\((\kappa ,\Gamma )\) where \(\kappa \in \{\omega ,\omega _1\}\) and \(\Gamma \) defines the class of stationary set preserving forcings. We show that MP\((\kappa ,\Gamma )\) has high consistency strength; on the other hand, if \(\Gamma \) defines the class of proper forcings or semi-proper forcings, then by Hamkins (2003), MP\((\kappa ,\Gamma )\) is consistent relative to \(V=L\).  相似文献   

7.
In this paper, we will study the dependence of eigen-pairs \((\lambda _k(\rho ), \varphi _k(x,\rho ))\) of weighted Dirichlet eigenvalue problem on weights \(\rho \). It will be shown that \(\lambda _k(\rho )\) and \(\varphi _k(x,\rho )\) are completely continuous (CC) in \(\rho \). Precisely, when \(\rho _n\) is weakly convergent to \(\rho \) in some Lebesgue space, \(\lambda _k(\rho _n)\) is convergent to \(\lambda _k(\rho )\). As for the convergence of eigenfunctions, since eigenvalues may have multiple eigenfunctions, it will be shown that the distance from \(\varphi _k(x,\rho _n)\) to the eigen space \(V_k(\rho )\) of \(\lambda _k(\rho )\) is tending to zero. As applications, the CC dependence of solutions of linear inhomogeneous equations and the CC dependence of the heat kernels on coefficients will be given.  相似文献   

8.
We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).
  相似文献   

9.
Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).  相似文献   

10.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

11.
Given a simple digraph D on n vertices (with \(n\ge 2\)), there is a natural construction of a semigroup of transformations \(\langle D\rangle \). For any edge (ab) of D, let \(a\rightarrow b\) be the idempotent of rank \(n-1\) mapping a to b and fixing all vertices other than a; then, define \(\langle D\rangle \) to be the semigroup generated by \(a \rightarrow b\) for all \((a,b) \in E(D)\). For \(\alpha \in \langle D\rangle \), let \(\ell (D,\alpha )\) be the minimal length of a word in E(D) expressing \(\alpha \). It is well known that the semigroup \(\mathrm {Sing}_n\) of all transformations of rank at most \(n-1\) is generated by its idempotents of rank \(n-1\). When \(D=K_n\) is the complete undirected graph, Howie and Iwahori, independently, obtained a formula to calculate \(\ell (K_n,\alpha )\), for any \(\alpha \in \langle K_n\rangle = \mathrm {Sing}_n\); however, no analogous non-trivial results are known when \(D \ne K_n\). In this paper, we characterise all simple digraphs D such that either \(\ell (D,\alpha )\) is equal to Howie–Iwahori’s formula for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {fix}(\alpha )\) for all \(\alpha \in \langle D\rangle \), or \(\ell (D,\alpha ) = n - \mathrm {rk}(\alpha )\) for all \(\alpha \in \langle D\rangle \). We also obtain bounds for \(\ell (D,\alpha )\) when D is an acyclic digraph or a strong tournament (the latter case corresponds to a smallest generating set of idempotents of rank \(n-1\) of \(\mathrm {Sing}_n\)). We finish the paper with a list of conjectures and open problems.  相似文献   

12.
In this paper, we consider the Fischer–Marsden conjecture within the frame-work of K-contact manifolds and \((\kappa ,\mu )\)-contact manifolds. First, we prove that a complete K-contact metric satisfying \(\mathcal {L}^{*}_g(\lambda )=0\) is Einstein and is isometric to a unit sphere \(S^{2n+1}\). Next, we prove that if a non-Sasakian \((\kappa ,\mu )\)-contact metric satisfies \(\mathcal {L}^{*}_g(\lambda )=0\), then \( M^{3} \) is flat, and for \(n > 1\), \(M^{2n+1}\) is locally isometric to the product of a Euclidean space \(E^{n+1}\) and a sphere \(S^n(4)\) of constant curvature \(+\,4\).  相似文献   

13.
For fixed real numbers \(c>0,\)\(\alpha >-\frac{1}{2},\) the finite Hankel transform operator, denoted by \(\mathcal {H}_c^{\alpha }\) is given by the integral operator defined on \(L^2(0,1)\) with kernel \(K_{\alpha }(x,y)= \sqrt{c xy} J_{\alpha }(cxy).\) To the operator \(\mathcal {H}_c^{\alpha },\) we associate a positive, self-adjoint compact integral operator \(\mathcal Q_c^{\alpha }=c\, \mathcal {H}_c^{\alpha }\, \mathcal {H}_c^{\alpha }.\) Note that the integral operators \(\mathcal {H}_c^{\alpha }\) and \(\mathcal Q_c^{\alpha }\) commute with a Sturm-Liouville differential operator \(\mathcal D_c^{\alpha }.\) In this paper, we first give some useful estimates and bounds of the eigenfunctions \(\varphi ^{(\alpha )}_{n,c}\) of \(\mathcal H_c^{\alpha }\) or \(\mathcal Q_c^{\alpha }.\) These estimates and bounds are obtained by using some special techniques from the theory of Sturm-Liouville operators, that we apply to the differential operator \(\mathcal D_c^{\alpha }.\) If \((\mu _{n,\alpha }(c))_n\) and \(\lambda _{n,\alpha }(c)=c\, |\mu _{n,\alpha }(c)|^2\) denote the infinite and countable sequence of the eigenvalues of the operators \(\mathcal {H}_c^{(\alpha )}\) and \(\mathcal Q_c^{\alpha },\) arranged in the decreasing order of their magnitude, then we show an unexpected result that for a given integer \(n\ge 0,\)\(\lambda _{n,\alpha }(c)\) is decreasing with respect to the parameter \(\alpha .\) As a consequence, we show that for \(\alpha \ge \frac{1}{2},\) the \(\lambda _{n,\alpha }(c)\) and the \(\mu _{n,\alpha }(c)\) have a super-exponential decay rate. Also, we give a lower decay rate of these eigenvalues. As it will be seen, the previous results are essential tools for the analysis of a spectral approximation scheme based on the eigenfunctions of the finite Hankel transform operator. Some numerical examples will be provided to illustrate the results of this work.  相似文献   

14.
On a compact Riemannian manifold M with boundary, we give an estimate for the eigenvalues \((\lambda _k(\tau ,\alpha ))_k\) of the magnetic Laplacian with Robin boundary conditions. Here, \(\tau \) is a positive number that defines the Robin condition and \(\alpha \) is a real differential 1-form on M that represents the magnetic field. We express these estimates in terms of the mean curvature of the boundary, the parameter \(\tau \), and a lower bound of the Ricci curvature of M (see Theorem 1.3 and Corollary 1.5). The main technique is to use the Bochner formula established in Egidi et al. (Ricci curvature and eigenvalue estimates for the magentic Laplacian on manifolds, arXiv:1608.01955v1) for the magnetic Laplacian and to integrate it over M (see Theorem 1.2). In the last part, we compare the eigenvalues \(\lambda _k(\tau ,\alpha )\) with the first eigenvalue \(\lambda _1(\tau )=\lambda _1(\tau ,0)\) (i.e. without magnetic field) and the Neumann eigenvalues \(\lambda _k(0,\alpha )\) (see Theorem 1.6) using the min-max principle.  相似文献   

15.
In this paper, we study the following nonlinear Dirac equation
$$\begin{aligned} -i\varepsilon \alpha \cdot \nabla u+a\beta u+V(x)u=|u|^{p-2}u,\ x\in \mathbb {R}^3, \ \mathrm{for}\ u\in H^1({{\mathbb {R}}}^3, {{\mathbb {C}}}^4), \end{aligned}$$
where \(p\in (2,3)\), \(a > 0\) is a constant, \(\alpha =(\alpha _1,\alpha _2,\alpha _3)\), \(\alpha _1,\alpha _2,\alpha _3\) and \(\beta \) are \(4\times 4\) Pauli–Dirac matrices. Under only a local condition that V has a local trapping potential well, when \(\varepsilon >0\) is sufficiently small, we construct an infinite sequence of localized bound state solutions concentrating around the local minimum points of V. These solutions are of higher topological type in the sense that they are obtained from a minimax characterization of higher dimensional symmetric linking structure. The existing work in the literature give finitely many such localized solutions depending on both the local behavior of the potential function V near the local minimum points of V and the global behavior of V at infinity.
  相似文献   

16.
A bounded linear operator T acting on a Hilbert space is said to have orthogonality property \(\mathcal {O}\) if the subspaces \(\ker (T-\alpha )\) and \(\ker (T-\beta )\) are orthogonal for all \(\alpha , \beta \in \sigma _p(T)\) with \(\alpha \ne \beta \). In this paper, the authors investigate the compact perturbations of operators with orthogonality property \(\mathcal {O}\). We give a sufficient and necessary condition to determine when an operator T has the following property: for each \(\varepsilon >0\), there exists \(K\in \mathcal {K(H)}\) with \(\Vert K\Vert <\varepsilon \) such that \(T+K\) has orthogonality property \(\mathcal {O}\). Also, we study the stability of orthogonality property \(\mathcal {O}\) under small compact perturbations and analytic functional calculus.  相似文献   

17.
We consider a closure operator c of finite type on the space \(SMod(\mathcal M)\) of thick \(\mathcal K\)-submodules of a triangulated category \(\mathcal M\) that is a module over a tensor triangulated category \((\mathcal K,\otimes ,1)\). Our purpose is to show that the space \(SMod^c(\mathcal M)\) of fixed points of the operator c is a spectral space that also carries the structure of a topological monoid.  相似文献   

18.
19.
We develop an approach to Malliavin calculus for Lévy processes from the perspective of expressing a random variable \(Y\) by a functional \(F\) mapping from the Skorohod space of càdlàg functions to \(\mathbb {R}\), such that \(Y=F(X)\) where \(X\) denotes the Lévy process. We also present a chain-rule-type application for random variables of the form \(f(\omega ,Y(\omega ))\). An important tool for these results is a technique which allows us to transfer identities proved on the canonical probability space (in the sense of Solé et al.) associated to a Lévy process with triplet \((\gamma ,\sigma ,\nu )\) to an arbitrary probability space \((\varOmega ,\mathcal {F},\mathbb {P})\) which carries a Lévy process with the same triplet.  相似文献   

20.
Let f be a \(C^{1+\alpha }\) diffeomorphism of a compact Riemannian manifold and \(\mu \) an ergodic hyperbolic measure with positive entropy. We prove that for every continuous potential \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that the topological pressure \(P(f|\Omega _n,\phi )\) converges to the free energy \(P_{\mu }(\phi ) = h(\mu ) + \int \phi {d\mu }\). We also prove that for a suitable class of potentials \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that \(P(f|\Omega _n,\phi ) \rightarrow P(\phi )\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号