首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vacuum ultraviolet (VUV) laser pulsed field ionization photoelectron (PFI-PE) spectrum of cis-dichloroethene (cis-ClCH[Double Bond]CHCl) has been measured in the energy region of 77 600-79 500 cm(-1). On the basis of the semiempirical simulation of the origin PFI-PE band, we have obtained the IE(cis-ClCH[Double Bond]CHCl) to be 77 899.5+/-2.0 cm(-1) (9.658 39+/-0.000 25 eV). The assignment of the vibrational bands resolved in the VUV-PFI-PE spectrum are guided by high-level ab initio calculations of the vibrational frequencies for cis-ClCH[Double Bond]CHCl(+) and the Franck-Condon factors for the ionization transitions. Combining the results of the present VUV-PFI-PE measurement and the recent VUV-infrared-photoinduced Rydberg ionization study, the vibrational frequencies for eleven of the twelve vibrational modes of cis-ClCH[Double Bond]CHCl(+) have been experimentally determined: nu(1) (+)(a(1))=181 cm(-1), nu(2) (+)(a(2))=277 cm(-1), nu(3) (+)(b(2))=580 cm(-1), nu(4) (+)(b(1))=730 cm(-1), nu(5) (+)(a(1))=810 cm(-1), nu(6) (+)(a(2))=901 cm(-1), nu(8) (+)(a(1))=1196 cm(-1), nu(9) (+)(b(2))=1348 cm(-1), nu(10) (+)(a(1))=1429 cm(-1), nu(11) (+)(b(2))=3067 cm(-1), and nu(12) (+)(a(1))=3090 cm(-1)). These values are compared to theoretical anharmonic vibrational frequencies obtained at the MP2/6-311G(2df,p) and CCSD(T)/6-311G(2df,p) levels. The IE prediction for cis-ClCH[Double Bond]CHCl has also been calculated with the wave function based CCSD(T)/CBS method, which involves the approximation to the complete basis set (CBS) and the high-level correlation corrections. The theoretical IE(cis-ClCH[Double Bond]CHCl)=9.668 eV thus obtained is found to have a deviation of less than 10 meV with respect to the experimental IE value.  相似文献   

2.
Using our newly built extreme ultraviolet (XUV) photoelectron and photoion spectrometer, we have obtained the pulsed field ionization zero kinetic energy (ZEKE) photoelectron spectra of SO2+(X2A1)<--SO2(X1A1) by coherent XUV radiation in the energy range of 12.29-12.82 eV. The adiabatic ionization potential (IP) of SO2 is 12.3458+/-0.0002 (eV), which was determined by comparing the partially resolved rotational branch contour with the simulated one. Besides the bending vibrational mode (upsilon2) which was found to be exclusive in the photoelectron spectra (PE) reported previously, we also observed the other two modes: the symmetric stretching (upsilon1) and the antisymmetric stretching (upsilon3) vibrations. The fundamental of the symmetric stretching (upsilon(1)) is 1057 cm(-1) and the overtone of the antisymmetric stretching (2upsilon(3)) is 2494 cm(-1). The new vibrational progressions (upsilon(1)00)+, (1upsilon(2)0)+, (2upsilon(2)0)+, and (0upsilon(2)2)+ have also been observed, and these new observations suggested that the irregular structure of (0upsilon(2)0)+ assigned to the previous PE spectra should be reconsidered. The comparison of the intensities of these vibrational bands with the calculated Franck-Condon factors with harmonic approximation was also made.  相似文献   

3.
Sixteen intermolecular vibrational levels of the S(0) state of the fluorobenzene-Ar van der Waals complex have been observed using dispersed fluorescence. The levels range up to ~130 cm(-1) in vibrational energy. The vibrational energies have been modelled using a complete set of harmonic and quartic anharmonic constants and a cubic anharmonic coupling between the stretch and long axis bend overtone that becomes near ubiquitous at higher energies. The constants predict the observed band positions with a root mean square deviation of 0.04 cm(-1). The set of vibrational levels predicted by the constants, which includes unobserved bands, has been compared with the predictions of ab initio calculations, which include all vibrational levels up to 70-75 cm(-1). There are small differences in energy, particularly above 60 cm(-1), however, the main differences are in the assignments and are largely due to the limitations of assigning the ab initio wavefunctions to a simple stretch, bend, or combination when the states are mixed by the cubic anharmonic coupling. The availability of these experimental data presents an opportunity to extend ab initio calculations to higher vibrational energies to provide an assessment of the accuracy of the calculated potential surface away from the minimum. The intermolecular modes of the fluorobenzene-Ar(2) trimer complex have also been investigated by dispersed fluorescence. The dominant structure is a pair of bands with a ~35 cm(-1) displacement from the origin band. Based on the set of vibrational modes calculated from the fluorobenzene-Ar frequencies, they are assigned to a Fermi resonance between the symmetric stretch and symmetric short axis bend overtone. The analysis of this resonance provides a measurement of the coupling strength between the stretch and short axis bend overtone in the dimer, an interaction that is not directly observed. The coupling matrix elements determined for the fluorobenzene-Ar stretch-long axis bend overtone and stretch-short axis bend overtone couplings are remarkably similar (3.8 cm(-1) cf. 3.2 cm(-1)). Several weak features seen in the fluorobenzene-Ar(2) spectrum have also been assigned.  相似文献   

4.
The copper-monomethylamine and -dimethylamine complexes were produced in a supersonic jet and examined using single-photon zero kinetic energy (ZEKE) photoelectron spectroscopy and theoretical calculations. The adiabatic ionization potentials (I.P.) of the complexes and vibrational frequencies of the corresponding ions were measured from their ZEKE spectra. The equilibrium geometries, binding energies, and vibrational frequencies of the neutral and ionized complexes were obtained from MP2 and B3LYP calculations. The observed vibrational frequencies of the ionic complexes were well-reproduced by both calculations, whereas the Franck-Condon intensity patterns of the spectra were simulated better by MP2 than B3LYP. The observed I.P. and vibrational frequencies of the Cu-NH(n)(CH3)(3-n) (n = 0-3) complexes were compared, and methyl substitution effects on their ZEKE spectra were discussed.  相似文献   

5.
We report studies of a supersonically cooled 2-indanol using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. In the REMPI experiment, we have identified three conformers of 2-indanol and assigned the vibrational structures of the first electronically excited state for the two major conformers. Conformer Ia contains an intramolecular hydrogen bond between the -OH group and the phenyl ring, while conformer IIb has the -OH group in the equatorial position. We have further investigated the vibrational spectroscopy of the cation for the two major conformers using the ZEKE spectroscopy. The two conformers display dramatically different vibrational distributions. The ZEKE spectrum of conformer Ia shows an extensive progression in the puckering mode of the five member ring, indicating a significant geometry change upon ionization. The ZEKE spectra of conformer IIb are dominated by single vibronic transitions, and the intensity of the ZEKE signal is much stronger than that of conformer Ia. These results indicate an invariance of the molecular frame during ionization for conformer IIb. We have performed ab initio and density functional theory calculations to obtain potential energy surfaces along the dihedral angle involving the -OH group for all three electronic states. In addition, we have also calculated the vibrational distribution of the ZEKE spectrum for the puckering mode of the five member ring. Not only the vibrational frequencies but also the intensity distributions for both conformers have been reproduced satisfactorily. The adiabatic ionization energies have been determined to be 68 593+/-5 cm(-1) for conformer Ia and 68 981+/-5 cm(-1) for conformer IIb.  相似文献   

6.
The vibrational structures of the electronic ground states ((approximately)X (2)A(2)) of furan, pyrrole, and thiophene cations have been studied by zero kinetic energy (ZEKE) photoelectron spectroscopic method. In addition to the strong excitations of the symmetric a(1) vibrational modes, other three symmetric vibrational modes (a(2), b(1), and b(2)) have been observed unambiguously. These results which cannot be explained by the Franck-Condon principle illustrate that the vibronic coupling and the Coriolis coupling may play important roles in understanding the vibrational structures of the five-membered heterocycle cations. The vibrationally resolved ZEKE spectra are assigned with the assistance of the density function theory calculations, and the fundamental frequencies for many vibrational modes have been determined for the first time. The first adiabatic ionization energies for furan, pyrrole, and thiophene were determined as 8.8863, 8.2099, and 8.8742 eV, respectively, with uncertainties of 0.0002 eV.  相似文献   

7.
The vacuum-ultraviolet (VUV) pulsed-field ionization-photoelectron (VUV-PFI-PE) spectra of trans-1-bromopropene (trans-CH(3)CH[Double Bond]CHBr) and cis-1-bromopropene (cis-CH(3)CH[Double Bond]CHBr) have been measured in the energy region of 74 720-76 840 cm(-1). The simulation of fine structures observed in the origin VUV-PFI-PE vibrational bands of these molecules has provided the ionization energies (IEs) of trans-1-bromopropene and cis-1-bromopropene to be 74 779.3+/-2.0 cm(-1) (9.2715+/-0.0002 eV) and 75 140.2+/-2.0 cm(-1) (9.3162+/-0.0002 eV), respectively. The vibrational bands resolved in these VUV-PFI-PE spectra at energies 0-1700 cm(-1) above the IEs of trans-1-bromopropene and cis-1-bromopropene have been assigned based on theoretical vibrational frequencies and calculated Franck-Condon factors for the ionization transitions.  相似文献   

8.
We report studies of supersonically cooled 4-aminopyridine (4-AP) using two-color resonantly enhanced multiphoton ionization (REMPI) and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state (S1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 62291+/-6 cm(-1). The REMPI spectrum of the S1 state is dominated by ring deformation modes and the inversion mode of the amino group, while the ZEKE spectra demonstrate a strong propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S1. In addition, the ZEKE spectra obtained via different vibrational levels of the S1 state contain four common features, corresponding to the activation of four different vibrational modes of the cation. These observations are explained in terms of the structural changes from the ground state to S1 and further to the cation. The vibrational mode distributions in both the REMPI and the ZEKE spectra, the excitation energy of the S1 state, and the ionization potential of 4-AP, are remarkably similar to those of aniline, suggesting that the electronic activity is centered on the ring.  相似文献   

9.
We report studies of supersonically cooled p-amino benzoic acid using one-color resonantly enhanced multiphoton ionization and two-color zero kinetic energy (ZEKE) photoelectron spectroscopy. With the aid of ab initio and density functional calculations, vibrational modes of the first electronically excited state S(1) of the neutral species and those of the cation have been assigned, and the adiabatic ionization potential has been determined to be 64 540+/-5 cm(-1). A common pattern involving the activation of five vibrational modes of the cation is recognizable among all the ZEKE spectra. A propensity of Deltav=0, where v is the vibrational quantum number of the intermediate vibronic state from S(1), is confirmed, and the origin of this behavior is discussed in the context of electron back donation from the two substituents in the excited state and in the cationic state. A puzzling observation is the doublet splitting of 37 cm(-1) in the ZEKE spectrum obtained via the inversion mode of the S(1) state. This splitting cannot be explained from our density functional calculations.  相似文献   

10.
Zero kinetic energy (ZEKE) photoelectron spectroscopy of the hydroquinone-water (HQW) complex was carried out to characterize its S(1)-S(0) resonantly enhanced multiphoton ionization (REMPI) spectrum in terms of the cis and trans conformers. The ZEKE spectra of the hydroquinone isomers show differences in the Franck-Condon (FC) activity of a few ring modes, viz., modes 15, 9b, and 6b, due to the different symmetries of the two isomers. These modes were used as a "diagnostic tool" to carry out the categorical assignment of the REMPI spectrum of the HQW complex. It was found that the FC activity of these diagnostic modes in the cationic ground state (D(0)) of the water complex is similar as that of the monomer. The two lowest energy transitions in the REMPI spectrum of the water complex, 33,175 and 33,209 cm(-1), were reassigned as the band origins of the cis and trans hydroquinone-water complexes, which is opposite of the previous assignment. The intermolecular stretching mode (sigma) of the complex shows a long progression, up to v(')=4, in the cationic ground state and is strongly coupled to other observed ring modes. The Franck-Condon factors for different members in the progression were calculated using the potential energy surfaces computed ab initio. These agree well with the observed intensity patterns in the progression. The ionization potential of the trans and cis complexes was determined to be 60,071+/-4 and 60,024+/-4 cm(-1), respectively.  相似文献   

11.
The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV.  相似文献   

12.
The 351.1 nm photoelectron spectrum of imidazolide anion has been measured. The electron affinity (EA) of the imidazolyl radical is determined to be 2.613 +/- 0.006 eV. Vibrational frequencies of 955 +/- 15 and 1365 +/- 20 cm(-1) are observed in the spectrum of the (2)B1 ground state of the imidazolyl radical. The main features in the spectrum are well-reproduced by Franck-Condon simulation based on the optimized geometries and the normal modes obtained at the B3LYP/6-311++G(d,p) level of density functional theory. The two vibrational frequencies are assigned to totally symmetric modes with C-C and N-C stretching motions. Overtone peaks of an in-plane nontotally symmetric mode are observed in the spectrum and attributed to Fermi resonance. Also observed is the photoelectron spectrum of the anion formed by deprotonation of imidazole at the C5 position. The EA of the corresponding radical, 5-imidazolyl, is 1.992 +/- 0.010 eV. The gas phase acidity of imidazole has been determined using a flowing afterglow-selected ion tube; delta(acid)G298 = 342.6 +/- 0.4 and delta(acid)H298 = 349.7 +/- 0.5 kcal mol(-1). From the EA of imidazolyl radical and gas phase acidity of imidazole, the bond dissociation energy for the N-H bond in imidazole is determined to be 95.1 +/- 0.5 kcal mol(-1). These thermodynamic parameters for imidazole and imidazolyl radical are compared with those for pyrrole and pyrrolyl radical, and the effects of the additional N atom in the five-membered ring are discussed.  相似文献   

13.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[a]pyrene (BaP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of the first excited state (S(1)) and those of the ground cationic state (D(0)). Similar to pyrene, another peri-condensed polycyclic aromatic hydrocarbon we have investigated, the first two electronically excited states of BaP exhibit extensive configuration interactions. However, the two electronic states are of the same symmetry, hence vibronic coupling does not introduce any out-of-plane modes in the REMPI spectrum, and Franck-Condon analysis is qualitatively satisfactory. The ZEKE spectra from the in-plane modes observed in the REMPI spectrum demonstrate strong propensity in preserving the vibrational excitation of the intermediate state. Although several additional bands in combination with the vibrational mode of the intermediate state are identifiable, they are much lower in intensity. This observation implies that the molecular structure of BaP has a tremendous capability to accommodate changes in charge density. All observed bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far infrared bands for astrophysical applications.  相似文献   

14.
The photoinduced Rydberg ionization spectrum of the third excited electronic state of phenylacetylene cation was recorded via the origin of the cation ground electronic state. The origin of this state is 17 834 cm(-1) above the ground state of the cation, and the spectrum shows well-resolved vibrational features to the energy of 2200 cm(-1) above this. An assignment of the vibrational structure was made by comparison to calculated frequencies and Franck-Condon factors. From the assignments, and electronic structure considerations, the electronic symmetry of the C state is established to be (2)B(1).  相似文献   

15.
The vibrational spectrum of triacetone triperoxide (TATP) is studied by the correlation-corrected vibrational self-consistent field (CC-VSCF) method which incorporates anharmonic effects. Fundamental, overtone, and combination band frequencies are obtained by using a potential based on the PM3 method and yielding the same harmonic frequencies as DFT/cc-pVDZ calculations. Fundamentals and overtones are also studied with anharmonic single-mode (without coupling) DFT/cc-pVDZ calculations. Average deviations from experiment are similar for all methods: 2.1-2.5%. Groups of degenerate vibrations form regions of numerous combination bands with low intensity: the 5600-5800 cm(-1) region contains ca. 70 overtones and combinations of CH stretches. Anharmonic interactions are analyzed.  相似文献   

16.
The 351.1 nm photoelectron spectrum of 1-pyrazolide anion has been measured. The 1-pyrazolide ion is produced by hydroxide (HO(-)) deprotonation of pyrazole in a flowing afterglow ion source. The electron affinity (EA) of the 1-pyrazolyl radical has been determined to be 2.938 +/- 0.005 eV. The angular dependence of the photoelectrons indicates near-degeneracy of low-lying states of 1-pyrazolyl. The vibronic feature of the spectrum suggests significant nonadiabatic effects in these electronic states. The gas phase acidity of pyrazole has been determined using a flowing afterglow-selected ion flow tube; Delta(acid)G(298) = 346.4 +/- 0.3 kcal mol(-1) and Delta(acid)H(298) = 353.6 +/- 0.4 kcal mol(-1). The N-H bond dissociation energy (BDE) of pyrazole is derived to be D(0)(pyrazole, N-H) = 106.4 +/- 0.4 kcal mol(-1) from the EA and the acidity using a thermochemical cycle. In addition to 1-pyrazolide, the photoelectron spectrum demonstrates that HO(-) deprotonates pyrazole at the C5 position to generate a minor amount of 5-pyrazolide anion. The photoelectron spectrum of 5-pyrazolide has been successfully reproduced by a Franck-Condon (FC) simulation based on the optimized geometries and the normal modes obtained from B3LYP/6-311++G(d,p) electronic structure calculations. The EA of the 5-pyrazolyl radical is 2.104 +/- 0.005 eV. The spectrum exhibits an extensive vibrational progression for an in-plane CCN bending mode, which indicates a substantial difference in the CCN angle between the electronic ground states of 5-pyrazolide and 5-pyrazolyl. Fundamental vibrational frequencies of 890 +/- 15, 1110 +/- 35, and 1345 +/- 30 cm(-1) have been assigned for the in-plane CCN bending mode and two in-plane bond-stretching modes, respectively, of X (2)A' 5-pyrazolyl. The physical properties of the pyrazole system are compared to the isoelectronic systems, pyrrole and imidazole.  相似文献   

17.
We report the electronic and vibrational spectroscopy of chrysene using resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. As an isomer of tetracene, chrysene contains a kink in the middle of the four fused hexagonal rings, which complicates not just the symmetry but, more importantly, the molecular orbitals and hence vibronic transitions. Incidentally, the two nearby electronically excited states of chrysene have the same symmetry, and vibronic coupling introduces no out-of-plane vibrational modes. As a result, the REMPI spectrum of chrysene contains essentially only in-plane ring deformation modes, similar to that of tetracene. However, density functional calculations using gaussian even after the inclusion of vibronic coupling can only duplicate the observed REMPI spectrum in a qualitative sense, and the agreement is considerably worse than our recent work on a few pericondensed polycyclic aromatic hydrocarbons and on tetracene. The ZEKE spectrum of chrysene via the origin band of the intermediate electronic state S(1), however, can be qualitatively reproduced by a straightforward Franck-Condon calculation. The ZEKE spectra from vibrationally excited states of the S(1), on the other hand, demonstrate some degree of mode selectivity: the overall intensity of the ZEKE spectrum can vary by an order of magnitude depending on the vibrational mode of the intermediate state. A scaling factor in the theoretical vibrational frequency for the cation is also needed to compare with the experimental result, unlike tetracene and pentacene.  相似文献   

18.
We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[g,h,i]perylene (BghiP) via resonantly enhanced multiphoton ionization (REMPI). Our analysis concentrates on the vibrational modes of both the first electronically excited state and the ground cationic state. Extensive vibronic coupling due to a nearby electronically excited state manifests through strong Franck-Condon (FC) forbidden bands, which are stronger than even the FC allowed bands in the REMPI spectrum. Theoretical calculations using Gaussian are problematic in identifying the electronic configurations of the excited electronic states and predicting the transition energies. However, by setting the keyword for the second excited electronic state, both density functional theory and configuration interaction methods can reproduce the observed spectrum qualitatively. The general agreement significantly helps with the vibrational assignment. The ZEKE spectra demonstrate propensity in preserving the vibrational excitation of the intermediate electronic state. In addition, almost all ZEKE spectra exhibit a similar vibrational distribution, and the distribution can be reproduced by an FC calculation from the vibronic origin of the first excited electronic state to the cationic state using Gaussian 09. These results suggest a remarkable structural stability of BghiP in accommodating the additional charge. All observed vibrational bands of the cation are IR active, establishing the role of ZEKE spectroscopy in mapping out far-infrared bands for astrophysical applications.  相似文献   

19.
Infrared spectra of mass-selected Cl- -C2H4 and Br- -C2H4 complexes are recorded in the vicinity of the ethylene CH stretching vibrations (2700-3300 cm(-1) using vibrational predissociation spectroscopy. Spectra of both complexes exhibit 6 prominent peaks in the CH stretch region. Comparison with calculated frequencies reveal that the 4 higher frequency bands are associated with CH stretching modes of the C2H4 subunit, while the 2 weaker bands are assigned as overtone or combinations bands gaining intensity through interaction with the CH stretches. Ab initio calculations at the MP2/aug-cc-pVDZ level suggest that C2H4 preferentially forms a single linear H-bond with Cl- and Br- although a planar bifurcated configuration lies only slightly higher in energy (by 110 and 16 cm(-1), respectively). One-dimensional potential energy curves describing the in-plane intermolecular bending motion are developed which are used to determine the corresponding vibrational energies and wavefunctions. Experimental and theoretical results suggest that in their ground vibrational state the Cl- -C2H4 and Br- -C2H4 complexes are localized in the single H-bonded configuration, but that with the addition of modest amounts of internal energy, the in-plane bending wavefunction also has significant amplitude in the bifurcated structure.  相似文献   

20.
Zero electron kinetic energy (ZEKE) spectroscopy is employed to gain information on the vibrational energy levels of the para-fluorotoluene (pFT) cation. Vibrationally resolved spectra are obtained following excitation through a range of intermediate vibrational energy levels in the S1 state. These spectra allow the observation of different cationic vibrational modes, whose assignment is achieved both from a knowledge of the S1 vibrational states and also by comparison with density functional calculations. In one notable case, clean ZEKE spectra were obtained from two overlapped S1 features. From the authors' data, the adiabatic ionization energy of pFT was derived as 70,946+/-4 cm(-1). The information on the cationic energy levels obtained will be useful in untangling the intramolecular vibrational redistribution dynamics of pFT in the S1 state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号