首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal complexes produced by depositing size selected Fe and Ag cluster cations in N2 and O2 matrices respectively are studied by infrared spectroscopy. Unknown species such as Fe(N2)x, Fe3 (N2)x and Ag3(O2)x are observed. The IR spectra of Ag+, Ag 2 + and Ag 9 + in excess O2 indicate that no complexes involving molecular oxygen are formed. However, the strong silver cluster UV-visible absorptions detected in Ar matrices disappear in the oxygen matrices, suggesting that silver-oxygen complexes are formed with dissociated oxygen.  相似文献   

2.
The low-energy dissociation channels of mass selected silver cluster ions Ag n 2+ (n = 9–24) are determined by collision induced dissociation (CID) in a Penning trap. While all clusters of the size n ≥ 17 evaporate neutral monomers, most smaller clusters undergo asymmetric fission of the form Ag n 2+ Ag n?3 + + Ag {3} + . However, Ag 15 2+ and Ag 11 2+ emit monomers which indicates shell or odd-even effects. The observed fragmentation pathways are different from previous reports of measurements with sputtered Ag n 2+ .  相似文献   

3.
Electronic properties of silicon-fluorine and germanium-fluorine cluster anions (SinF m ? n = 1–9, m = 1–3, GenF m ? ; n =1–9, m = 1–3) were investigated by photoelectron spectroscopy using a magnetic-bottle type electron spectrometer. The binary cluster anions were generated by a laser vaporization of a silicon/germanium rod in an He carrier gas mixed with a small amount of SiF4 or F2 gas. Comparison between photoelectron spectra of SinF?/GenF? and Sin /Gen (n = 4–9) gives the insight that the doped F atom can remove one electron from the corresponding Sin n ? /Ge n ? cluster without any serious rearrangement of Sin/Gen framework, because only the first peak of Si n ? /Ge n ? , corresponding singly occupied molecular orbital (SOMO), disappears and other successive spectral features are unchanged with the F atom doping  相似文献   

4.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

5.
6.
Non-empirical calculations of CASSCF energies, electric dipole moments, Einstein coefficients, matrix elements of the operator of spin-orbital interaction between states of different multiplicity in a model complex 6,8[Mn-O2] of C 2v symmetry have been made in 3-21G, 6-31G, 6-31G** basis sets. The crosssections of the potential energy surface (PES) of the ground and excited states were built. It is found that oxygen bonding to manganese is possible when excited atoms of manganese collide with molecular oxygen, singlet oxygen with Mn[6 S 5/2] atoms, or in a close contact O2[X3Σ g ? ] + Mn[6 S 5/2] and is determined by charge transfer states 6,8CTS(Mn+O 2 ? ). Mechanisms of singlet oxygen activation/deactivation are determined by a considerably increased probability of electric dipole transitions b 1Σ g + ?a 1Δg, a 1Δg?X3Σ g ? , b 1Σ g + ?X3Σ g ? induced in oxygen in the collision process.  相似文献   

7.
The hydrogen-bonded (N2H4) n clusters and the van der Waals (OCS) n clusters are size selected in a scattering experiment with a He beam up to the cluster sizen=6. By measuring the angular distributions of the scattered clusters the complete fragmentation pattern of electron impact ionization is obtained. For Hydrazine the two main fragment masses are the protonated species (N2H4) n?1H+ and with somewhat weaker intensities also the nominal ion mass (N2H4) n + . The largest intensity is observed for the monomer ion N2H 4 + to which clusters up ton=5 fragment. For carbonylsulfide, completely different results are obtained. Aside from the fragments of the OCS monomer and the van der Waals cluster fragments (OCS) 2 + and (OCS) 3 + signals at mass S 2 + , S 3 + and S2OCS+ are detected. This indicates a fast chemical reaction in the cluster according to: S + OCS → CO + S2 which occurs for clusters of sizen ≥ 2. Peaks at S 3 + and S2OCS+ are seen for the first time forn ≥ 5 according to a further reaction of S2 in the cluster.  相似文献   

8.
We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging fromn=1?400 for Pb n + and Pb n ? , and fromn=12?5700 for Li n ? .  相似文献   

9.
The ion-clustering mechanism of the quenching of the metastable 2S-state of the muonic helium ion (μHe) 2S + in gaseous helium is studied on the basis of quantum-chemical calculations of clusters He n (μHe)+. It is shown that the quenching rates do not depend on the cluster ordern atn ≥ 2. In the helium gas at the pressure 0.1 ?p(atm) ? 10 the quenching of (μHe) 2S + proceeds, mainly, at the vibrationally excited levels of He(μHe) 2S + cluster, while atp ? 10 atm, at the ground vibrational state of the cluster He2(μHe) 2S + . Atp ≥0.1 atm the calculated quenching rates agree with the recent experimental data.  相似文献   

10.
The previously measured relative cross section function for electron impact ionization (EII) of neutral Ag2 has now been calibrated quantitatively by combining the electron impact ionization with in situ non resonant two photon ionization (NR2PI). By comparing the NR2PI saturation intensities measured for Ag 2 + and Ag+ with the corresponding EII intensities, the ratio between the electron impact ionization cross sections (EIICS) of neutral Ag2 and Ag was determined to be σAg2Ag=1.53 for an electron energy of 46 eV. This result agrees well with the geometricn 2/3-rule \((\sigma X_n \sim n^{2/3} )\) commonly proposed for the dependence of the EIICS of clustersX n on the cluster sizen.  相似文献   

11.
Manganese cluster ions Mn k + (k?60) have been produced by 7 keV Xe ion bombardment and analyzed by a double-focusing mass spectrometer. Discontinuous variations of intensity are found atk=5, 14, 16, 29, 34, 45 and 54. Most of these magic numbers coincide with or differ by only one from those observed in Ar k + . The similarity in magic numbers between Mn k + and Ar k + indicates that the bonding nature in the charged Mn clusters is similar to that in the charged Ar clusters; The polarization force between a positive ion in the center of a cluster and surrounding neutral atoms is dominant binding force.  相似文献   

12.
Using crossed atomic, molecular cluster, and cw laser beams in conjunction with mass spectrometric ion detection, we have obtained for the first time results for electron transfer fromstate-selected Rydberg atoms to molecular clusters. We report negative ion mass spectra for (CO2) k ? (4≦k≦25) and (O2) k ? (1≦k≦13) cluster ions, resulting from collisions of Ar** (nd) Rydberg atoms (12≦n≦40) with (CO2) m and (O2) m clusters at relative velocities around 830 m/s, and, for comparison, positive ion mass spectra due to Ne(3s 3 P 2, 0) Penning ionization. For both CO 2 ? and O2-clusters, the negative and the positive ion mass spectra are very different. For (CO2) k Emphasis>/? cluster ions, the mass spectra show distinct variations with principal quantum number of the Rydberg atom, corresponding to differentn-dependences of the effective rate constant for selected cluster ions, as measured relative to the knownn-dependence for SF 6 ? formation in collisions with SF6. For (O2) k ? cluster ions, on the other hand, the mass spectra are almost independent ofn with ion intensities, which clearly reflect their thermochemical stabilities (O 4 ? as dominant species).  相似文献   

13.
Fe n + and Pd n + clusters up ton=19 andn=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe n + clusters react by simply adsorbing intact NH3 molecules. Only Fe 4 + ions show dehydrogenation/adsorption to Fe4(NH) m + intermediates (m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd n + cluster ions (n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd 6 + appear totally unreactive. Towards D2, Pd 7 + ions seem inert, whereas Pd 8 + adsorb up to two molecules.  相似文献   

14.
We study several silicon oxide cluster series with different Si:O stoichiometries using photoelectron spectroscopy (PES) of size-selected anions: (SiO) n ? (n=3–5), (SiO2) n ? (n =1–4), and Si(SiO2) n ? (n = 2,3). The (SiO)n clusters are shown to be closed-shell molecules and the HOMOLUMO gaps are observed from the PES spectra to decrease for larger n. These clusters are shown to have ring sturctures. Si3O4 is known to have a D2d structure with two perpendicular Si2O2 rhombuses.The PES spectrum of Si4O 6 ? is very similar to that of Si3O 4 ? . It is concluded that Si4O6 has a similar structure with a chain of three Si2O2 rhombuses. The (SiO2)n clusters all exhibit high electron affinities and only one band is observed at 4.66 eV photon energy. These clusters are shown to have similar chain structures containing Si2O2 rhombuses, but the two terminal Si atoms are bonded to an extra 0 atom each. The possibility of using these clusters to provide structural models for oxygen-deficient defects in bulk silicon oxides is also discussed.  相似文献   

15.
The solubility of carefully characterized magnetite, Fe3O4, in dilute aqueous solutions saturated with H2 has been measured at temperatures from 100 to 300°C in a flow apparatus. Solution compositions included either HCl or NaOH molalities of up to 1 and 40 mmole-kg?1, respectively, and H2 molalities of 0.0779, 0.779, and 8.57 mmole-kg?1. The dependence of the equilibrium solubility on the pH and reduction potential were fitted to a scheme of soluble ferrous and ferric species consisting of Fe2+, FeOH+, Fe(OH)2, Fe(OH) 3 ? , Fe(OH)3, and Fe(OH) 4 ? . Solubility products from the fit, corresponding to the reactions $$\tfrac{1}{3}Fe_3 O_4 + (2 - b)H^ + + \tfrac{1}{3}H_2 \rightleftharpoons Fe(OH)_b^{2 - b} + (4/3 - b)H_2 O$$ and $$\tfrac{1}{3}Fe_3 O_4 + (3 - b)H^ + \rightleftharpoons Fe(OH)_b^{3 - b} + \tfrac{1}{6}H_2 + (4/3 - b)H_2 O$$ were used to derive thermodynamic constants for each species. The extrapolared value for the Gibbs energy of formation of Fe2+ at 25°C is ?88.92±2.0 kJ-mole?1, consistent with standard reduction potentials in the range Eo(Fe2+)=?0.47±0.01 V. The temperature coefficient of the equilibrium Fe molality, (?m(Fe, sat.)/?T)m(H2).m(NaOH), changes from negative to positive as the NaOH molality is increased to the point where Fe(OH) 3 ? and Fe(OH) 4 ? predominate.  相似文献   

16.
Both positive and negative phosphorus cluster ions were generated from the laser ablation of a red phosphorus sample. The mass distribution of phosphorus cluster ions was found to be very sensitive to the power density of the ablation laser. The P 7 + species exhibits the highest signal intensity in the recorded mass spectra of bare phosphorus cluster cations, as does P 5 - among the anions. Their special structural stability can be attributed to their planar configuration and their aromatic character. As the phosphorus cluster size increases, the odd/even alternation of the signal intensity becomes more pronounced. For the P n + species with n > 24, the relative abundance varies in the order of 8 and P n + with n = 8k + 1 (k = 3–11) are more intense than their neighbors. For comparison, some binary phosphide cluster ions, including CnP m - , SinP m - , BnP m + and AlnP m + , were produced as well. The mass distribution of binary phosphide cluster ions changes with different components. From analysis of the recorded mass spectra of the phosphide cluster ions, the larger clusters may be in a polyhedral configuration and tend to have all valence electrons paired.  相似文献   

17.
Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n ? , Pb n ? ) are detached by ultraviolet laser light (=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n ? are dominated by flat thresholds with ann-dependence similar to that of other group IV clusters. In contrast, for Pb n ? we find pronounced narrow lines close to threshold, generally followed by a 0.3–1.4 eV gap which indicates closed-shell behaviour of Pb n ? for nearly alln.  相似文献   

18.
Nanostructured Ag films composed of nanoparticles and nanorods can be formed by the ultrasonication of ethanol solutions containing Ag2O particles. The present work examined the formation process of these films from ethanol solutions by two different agitation methods, including ultrasonication and mechanical stirring. The mass-transfer process from Ag2O particles to ethanol solvent is accelerated by the mechanical effects of ultrasound. Ag+ ions and intermediately reduced Ag clusters were released into the ethanol. These Ag+ ions and Ag clusters provide absorption bands at 210, 275 and 300 nm in UV-vis spectra. These bands were assigned to the absorption of Ag+, Ag 4 2+ and Agn (n?≈?3). The Agn clusters that readily grow to become Ag nanoparticles were formed due to the surface reaction of Ag2O particles with ethanol under ultrasonication. The reactions of Ag+ ions in ethanol to form Ag nanomaterials (through the formation of Ag 4 2+ clusters) were also accelerated by ultrasonication.  相似文献   

19.
Thermal and thermochemical investigations of natural hydroxyl-bearing copper sulfate Cu3SO4(OH)4??antlerite have been carried out. The stages of its thermal decomposition have been studied employing the Fourier-transform IR spectroscopy. The enthalpy of formation of antlerite from the elements ??f H m o (298.15?K)?=?(?1750?±?10)?kJ?mol?1 has been determined by the method of oxide melt solution calorimetry. Using value of S m o (298.15?K), equal to (263.46?±?0.47)?J?K?1?mol?1, obtained earlier by the method of adiabatic calorimetry, the Gibbs energy value of ??f G m o (298.15?K)?=?(?1467?±?10)?kJ?mol?1 has been calculated.  相似文献   

20.
Negative cluster ions M p C n ? (M normal element,n<10,p=1?4) produced by various experimental techniques from carbides show in their emission intensities a very strong even-odd effect according to the parity of the carbon atom numbern. This is in particular the case when M=N, F, Cl (p=1), M=H, Al, Si, S (p=1, 2) or M=B (p=1?4). The largest intensities of M p C n ? ions always take place for evenn except in the cases of NC n ? , B2C n ? and Al2C n ? , for which the maxima of emission occur for oddn. This oscillating behaviour corresponds to alternations in the stability of the clusters which are mainly due to the fact that, in Pitzer and Clementi model (linear chains in thesp hybridization within the framework of Hückel theory), the HOMO (highest occupied molecular orbital) of the clusters lies in a double degenerateπ level band: a cluster with a complete HOMO is always more stable than a cluster with a nearly empty HOMO. This result involves that the total number ofπ electrons is the main factor governing the parity of the stability alternations. Accordingly, since the knowledge of theπ electron number requires the determination of theσ electron number too, these alternations enable us to infer a very likely electronic structure of the ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号