首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
利用传统分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验技术来实现试件在较低应变率下的大变形时,需要使用超长的压杆系统,杆件的加工和实验空间限制了该技术的推广应用。鉴于此,提出一种直撞式霍普金森压杆二次加载实验技术,利用透射杆中的应力波在其末端的准刚性壁反射实现对试件的二次加载,并分析了准刚性质量块尺寸对二次加载的影响规律;采用二点波分离方法对叠加的应力波进行了有效分离和计算,在总长4 m的压杆系统中实现了1.2 ms的长历时加载,并可以准确获得试件的加载应变率曲线和应力应变关系。建立了直撞式霍普金森压杆二次加载有限元模型,数值仿真结果表明,该实验技术能有效地实现试件的二次加载,与超长SHPB系统获得的仿真结果相比较,两者的试件应力应变关系完全一致。利用该技术对1100铝合金材料进行动态压缩实验,实现了其在102 s?1量级应变率下的大变形动态力学性能测试。  相似文献   

2.
两点应变测量法在SHPB测量技术上的运用   总被引:7,自引:1,他引:7  
介绍了两点应变测量法在分离式Hopkinson压杆 (SHPB)测量技术上的运用。该方法通过测量一根压杆两个不同地方的应变 ,利用一个简单的反复过程将压杆中相对传播并叠加在一起的右行波与左行波分离 ,从而利用输入杆对试件的多次加载来研究软材料的动态力学性能。利用该方法计算所得的最大应变比利用传统SHPB测量技术得到的最大应变增大了 2~ 3倍。  相似文献   

3.
采用改进的SHPB方法对泡沫铝动态力学性能的研究   总被引:5,自引:1,他引:5  
本文改进了传统的分离式霍布金森压杆(SHPB)技术,采用夹在透射杆中的PVDF压电计直接测量透射杆中的应力时程.同时,采用输入波形整形技术,通过调整加载波形,使试样加载过程中保证均匀变形及应力平衡.利用此改进了的SHPB技术对泡沫铝进行了高应变率下的动态压缩实验.实验结果表明:泡沫铝的动态应力应变曲线具有泡沫材料的应力应变曲线的“三阶段”特征(elastic region,collapse region and densification region),并且应变率对其力学性能影响明显.  相似文献   

4.
瞬态冲击载荷作用下肝脏的力学响应是损伤生物力学的重要研究内容。本文提出了一种可用于软组织动态压缩力学特性测试的改进SHPB(分离式霍普金森压杆,Split Hopkinson Pressure Bar)方法。该方法采用PVDF(聚偏氟乙烯,Polyvinylidene Fluor)压电薄膜传感器测量实验过程中试件两端面的受力,以此来计算试件的应力,从而无需测量透射杆上的微弱透射信号。猪肝试样前后端面的PVDF压电信号对比表明,加载过程中试样达到了动态应力平衡状态。试样动态压缩中的惯性效应主要在加载的初始阶段对透射应力信号造成较大影响,在大变形阶段惯性效应引起的轴向应力较小。利用此方法对猪肝组织进行三种高应变率(1800s-1,2500s-1,3500s-1)的动态压缩实验,并采用基于真实应变的惯性效应公式对实验数据进行修正计算。结果表明:猪肝组织在准静态与高应变率时的应力应变曲线都呈现出凹向上的非线性特征,即曲线初始阶段应力增长较缓慢,当应变达到15%后应力值则迅速增大;猪肝组织也具有明显的应变率效应,即随着应变率的增加,应力应变曲线的整体应力值也随之增大。最后,采用黏超弹性本构模型描述了猪肝组织的动态应力应变曲线。  相似文献   

5.
软材料和松散材料SHPB冲击压缩实验方法研究   总被引:3,自引:0,他引:3  
针对采用SHPB装置研究泡沫等软材料和黄土、砂等松散介质的动态特性时存在的实验技术问题,提出利用钢套筒约束试件横向变形的方法,在SHPB冲击加载装置上实现材料准一维应变实验,研究了上述材料在准一维应变条件下的动态力学特性。本文同时指出,可以通过引入一约束系数描述试件一维应变条件的满足程度,并指出钢套筒的横向变形对实现试件一维应变的影响不大。在此基础上,进行了相关实验研究,说明了该实验技术能较好地满足软材料或松散介质力学性能研究工作的需要。  相似文献   

6.
软材料的SHPB实验设计   总被引:19,自引:3,他引:19  
通过对SHPB实验中加载波波形进行控制设计 ,实现软材料试样在加载过程中的应力平衡和常应变率加载 ,从而保证SHPB实验的前提条件。采用这种方法研究了两种材料的高应变率本构 ,实验结果表明 :设计的方法是行之有效的。  相似文献   

7.
软材料的动态力学性能研究一直备受关注,目前分离式Hopkinson压杆(split Hopkinson pressure bar, SHPB)技术是其最重要的测试手段,然而在测试超软材料时实验装置设计方面仍存在许多有待改进之处。本文中研制了一套双子弹电磁驱动SHPB系统,使用聚碳酸酯作为杆件材料以克服软材料试件带来的诸多困难,引入了双子弹设计方案解决了电磁驱动方式难以应用于非铁磁材料的问题,并有效保证了子弹速度的准确控制。使用双子弹电磁驱动SHPB系统和传统金属SHPB装置同时对硅胶材料的动态力学性能进行了测试,实验结果的吻合性验证了本套系统的可靠性。应用双子弹电磁驱动SHPB系统开展了聚乙烯醇(polyvinyl alcohols, PVA)水凝胶这种超软材料在高应变率下的实验,成功表征出其动态力学性能。  相似文献   

8.
本文提出一种基于高速摄像和数字图像相关方法(DIC)的分离式Hopkinson压杆(SHPB)测量技术,从而实现试件应变和两端应力的同步测量。即在与试件接触的输入输出杆两端制作散斑,通过高速摄像获取SHPB实验过程中的散斑变形图像,由DIC测得各时刻试件的应变、输入输出杆端的应变(可直接换算为试件两端的应力)。由于试件和杆端的应变都是从同一张高速摄影的图像上分析得到的,因此它们是同步的。应用该方法对钢纤维混凝土试件的SHPB试验进行了测量,测量结果与传统应变片测量结果吻合,验证了该方法的可行性。该技术不仅实现了SHPB实验中试件应变和应力的同步测量,还将有助于直接检验各材料在SHPB实验中试件两端的力在实验过程中是否平衡。  相似文献   

9.
Hopkinson压杆实验技术的应用进展   总被引:20,自引:1,他引:20  
胡时胜 《实验力学》2005,20(4):589-594
SHPB实验装置是研究各类工程材料动态力学性能的最基本实验手段,它不仅可用于测量金属、高聚物等均匀性好、变形量较大材料的冲击压缩(拉伸、剪切、扭转)应力—应变关系,经改进后还可以用于测量质地软、波阻抗小的泡沫介质材料和质地脆、均匀性差的混凝土类材料的冲击压缩应力-应变关系。此外,SHPB实验装置因加载方式简单,加载波形易测易控制,还可以开展混凝土类材料的层裂强度研究,火工品、引信的安全性、可靠性检测,高G值加速度传感器的标定以及炸药材料的压剪起爆临界点的测定等。  相似文献   

10.
聚合物材料SHPB实验关键问题   总被引:3,自引:0,他引:3  
分离式霍普金森压杆(SHPB)广泛用于测量聚合物材料在高应变率下的动态力学行为.但是由于聚合物材料本身的低强度、低刚度、低阻抗、低波速等特点,使得SHPB动态试验相比其他材料更加复杂.论文较为详细地综述了聚合物材料SHPB实验技术中的应力应变计算、脉冲整形技术、动态应力平衡、摩擦与惯性效应、试件与波导杆的选择、碰撞速度与应变率关系、最大常应变率的确定等关键问题及其进展.理解这些关键问题并且采用目前较好的方法,对于获得聚合物材料有效和准确的高应变率力学特性具有重要意义.  相似文献   

11.
Dynamic Tensile Testing of Soft Materials   总被引:1,自引:0,他引:1  
Determination of dynamic tensile response of soft materials has been a challenge because of experimental difficulties. Split Hopkinson tension bar (SHTB) is a commonly used device for the characterization of high-rate tensile behavior of engineering materials. However, when the specimen is soft, it is challenging to design the necessary grips, to measure the weak transmitted signals, and for the specimen to achieve dynamic stress equilibrium. In this work, we modified the SHTB on the loading pulse, the equilibrium-monitoring system, and the specimen geometry. The results obtained using this modified device to characterize a soft rubber indicate that the specimen deforms under dynamic stress equilibrium at a nearly constant strain rate. Axial and radial inertia effects commonly encountered in dynamic characterization of soft materials are also minimized.  相似文献   

12.
The condition of dynamic stress equilibrium is not satisfied automatically when a split Hopkinson pressure bar (SHPB) is employed to determine the dynamic properties of soft materials. In order to develop guidelines for the proper design of SHPB experiments under valid testing conditions, an integrated experimental/analytical study has been conducted to examine the process of dynamic stress equilibrium in a soft rubber specimen. Dynamic compressive experiments on a RTV 630 and an ethylene-propylene-diene monomer rubber with a SHPB modified for soft material testing were conducted to determine the effects of specimen thickness and loading rate on the stress equilibrating process. An analytical model was employed to analyze the equilibrating processes observed in experiments. It is found that the incident loading rate dominates the initial non-equilibrium stress state, and the specimen thickness mainly affects the dynamic stress equilibrium after the initial stage.  相似文献   

13.
R. Chen  F. Dai  J. Qin  F. Lu 《Experimental Mechanics》2013,53(7):1153-1159
An indirect tensile testing method is proposed to measure the full dynamic tensile stress-strain curve of low strength brittle solids. In this method, the flattened-Brazilian disc (FBD) sample is loaded by modified split Hopkinson pressure bars (SHPB) system. Low amplitude dynamic forces were measured with a pair of piezoelectric force transducers embedded in the incident bar and the transmitted bar. The evolution of tensile stress at the center of the disc sample was determined through finite element analyses using the measured stress in SHPB as inputs. In a traditional Brazilian test, a strain gauge is mounted at the center of the specimen to measure the tensile strain, which is difficult to apply for low strength brittle materials. Thus, two types of non-contact methods, the Digital Image Correlation (DIC) technique and the Laser Gap Gauge (LGG), were used to measure the strain. The DIC method was used to monitor the displacement and the strain map of the specimen during the test, from which the strain at the center of the specimen can be obtained. The accuracy of the DIC results was assessed, and the displacement and strain uncertainties of our system were 0.003 mm and 0.003, respectively. LGG was used to monitor the expansion of the disc perpendicular to the loading axis, from which the average tensile strain is deduced. The numerical simulation revealed that the tensile strain at the center of the specimen is proportional to the average tensile strain and that the ratio is not sensitive to the material elastic parameters. The strain measured through LGG was compared with that measured by the DIC method using photos captured with a synchronized high-speed camera. The result of the LGG method was 20 % smaller than that of the DIC process. However, the latter was limited by the number of frames of the high-speed camera. The feasibility of this methodology was demonstrated using a polymer-bonded explosive (PBX).  相似文献   

14.
一种用于材料高应变率剪切性能测试的新型加载技术   总被引:4,自引:0,他引:4  
高应变率下的冲击剪切实验技术是材料动态力学行为及其微观机理研究的重要基础.采用分离式霍普金森压杆(split Hopkinson pressure bar)装置一般可以获得材料在104s-1以内应变率的动态力学性能.在超过104s-1的应变率下对材料进行冲击剪切测试时,通常需要采用高速压剪飞片技术或由气炮发射子弹对试样进行直接加载.本文提出一种可用于传统霍普金森压杆技术的新型双剪切试样,可以在103~105s-1剪应变率范围实现对材料剪切性能的精确测量;同时,可以对材料的变形及失效过程进行直接观测.试样与压杆之间避免了复杂的界面或连接装置,通过转接头可以保证试样与压杆直接接触,提高测试精度,同时可以防止因试样的横向位移而导致的非均匀变形.获得了紫铜在1400~75000s-1应变率下的剪应力-剪应变曲线,并采用计算软件"ABAQUS/Explicit"对双剪切试样的动态加载过程进行了数值模拟和结果验证.分析表明,剪切区的主要区域内剪切成分占主导地位,其应力应变场沿厚度及宽度方向基本呈均匀分布.实验得到的剪应力-剪应变曲线与模拟结果吻合较好,说明所提出的基于分离式霍普金森压杆系统的双剪切试样可以为材料的高应变率力学性能测试提供一种方便有效的加载技术.   相似文献   

15.
16.
Pulse-shaping techniques are developed for both the loading and unloading paths of a split Hopkinson pressure bar (SHPB) experiment to obtain valid dynamic stress-strain loops for engineering materials. Front and rear pulse-shapers, in association with a momentum trap, are used to precisely control the profiles of the loading and unloading portions of the incident pulse. The modifications, ensure that the specimen deforms at the same constant strain rate under dynamic stress equilibrium during both loading and unloading stages of an experiment so that dynamic stress-strain loops can be accurately determined. Dynamic stress-strain loops with a constant strain rate for a nickel-titanium shape memory alloy and polymethyl methacrylate are determined using the modified SHPB. The modified momentum trap prevents repeated loading on a specimen without affecting the amplitude of the desired loading pulse and without damaging the bar at high stress levels.  相似文献   

17.
In inverse finite element-based analysis, complete experimental data collection is critical for multi-parameter identification and physical modeling of all kinds of materials. In this paper, diffraction-assisted image correlation (DAIC) is improved and proposed for the deformation measurement of a soft material under indentation with no blind area. A simple and convenient image-based 3D calibration method was developed, and more accurate formulations for 3D displacement measurement based on a more rigorous imaging model were derived. Using the improved DAIC, a newly developed imaging device with indenter-fixed loading and no blind area is proposed that allows 3D displacements of the whole upper surface of a soft silica gel specimen to be retrieved. The experimental results demonstrate that the proposed method is an accurate, efficient and convenient tool with a simple structure for 3D indentation deformation measurement and illustrate its capabilities to capture deformation in indentation tests with tough testing requirements, such as in situ measurement with limited access (high integration level) and dynamic testing (capturing of synchronously stereo images).  相似文献   

18.
Dynamic fracture toughness determined from load-point displacement   总被引:6,自引:0,他引:6  
The paper presents a method to determine dynamic fracture toughness using a notched three-point bend specimen. With dynamic loading of a specimen there is a complex relation between the stress-intensity factor and the force applied to the specimen. This is due to effects of inertia, which have to be accounted for to evaluate a correct value of the stress-intensity factor. However, the stress-intensity factor is proportional to the load-point displacement if the fundamental mode of vibration is predominant in the specimen. The proportionality constant depends only on the geometry and stiffness of the specimen. In the present method we have measured the applied force and load-point displacement by a modified Hopkinson pressure bar, where two-point strain measurement has been used to evaluate force and displacement for times greater than the transit time for elastic waves in the Hopkinson bar. We have compared the method with the stress-intensity factor derived from strain measurement near the notch tip and good agreement was obtained. The method is well suited for high-temperature testing and results from fracture toughness tests of brittle materials at ambient and elevated temperatures are presented.  相似文献   

19.
A quartz-crystal-embedded split Hopkinson pressure bar for soft materials   总被引:7,自引:0,他引:7  
A dynamic experimental technique that is three orders of magnitude as sensitive in stress measurement as a conventional split Hopkinson pressure bar (SHPB) has been developed. Experimental results show that this new method is effective and reliable for determining the dynamic compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths, such as elastomeric materials and foams at high strain rates. The technique is based on a conventional SHPB. Instead of a surface strain gage mounted on the transmission bar, a piezoelectric force transducer was embedded in the middle of the transmission bar of a high-strength aluminum alloy to directly measure the weakly transmitted force profile from a soft specimen. In addition, a pulse-shape technique was used for increasing the rise time of the incident pulse to ensure stress equilibrium and homogeneous deformation in the low-impedance and low-strength specimen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号