首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

2.
The optically active indenyl complexes ((η5-C9H7)Ru(L---L)Cl (where L---L is either (S,S)-1,2-dimethyl-1,2-ethanediylbis(diphenylphosphine) (chiraphos) or (R,R)-1,2-cyclopentanediylbis(diphenylphosphine) (cypenphos)) have been synthesized and spectroscopically characterized and compared with the corresponding cyclopentadienyl complexes. Reaction of the new complexes with 2-e-donors give cationic adducts in which the pentahaptocoordination of the indenyl ligand is maintained. The crystal structures of (S,S)-(η5-C9H7)Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (1) and (S,S)-η5-C5H5Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (3) have been determined.  相似文献   

3.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

4.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

5.
The P-functional organotin dichloride [Ph2P(CH2)3]2SnCl2 (3) is synthesized by reaction of Ph2P(CH2)3MgCl with SnCl4 independently of the molar ratio of the starting compounds. The corresponding organotin trichlorides Ph2P(CH2)nSnCl2R (4: n=2, R=Cl; 5: n=3, R=Cl; 6: n=3, R=Me) are formed in a cleavage reaction of Ph2P(CH2)nSnCy3 (n=2, 3) with SnCl4 or MeSnCl3, respectively. The main features of the crystal structures of 3–6 are both intra- and intermolecular PSn coordinations and the existence of intermolecular Sn---ClSn bridges. For further characterization of the title compounds, the adducts 4(Ph3PO)2 (7) and 5(Ph3PO) (8), as well as the P-oxides and P-sulfides of 3–6 (9–15), are synthesized. The results of crystal structure analyses of 7, 11, 12, and 14 are reported. The structures of 9–15 are characterized by intramolecular P=XSn interactions (X=O, S). A first insight into the structural behavior of the compounds 3–15 in solution is discussed on the basis of multinuclear NMR data.  相似文献   

6.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

7.
The coordinatively unsaturated cluster [Pt33-CO)(μ-dppm)3]2+ (1, dppm = Ph2PCH2PPh2) reacts with Na+[M(CO)5] to give the mixed metal clusters [Pt3{M(CO)3}(μ-dppm)3]+ (M = Re, 2; Mn, 3). The new clusters are characterized by spectroscopic methods and, for M = Re, by an X-ray structure determination. The Pt3Re core in 2 is tetrahedral with particularly short metal-metal distances.  相似文献   

8.
The strong π-acid ligand Ph2PN(iBu)PPh2 reacts with Co2(CO)S (1:1) to give Co2[μ-Ph2PN(iBu)PPh2] (μ-CO)2(CO)4 (1); however, when the ratio is 2:1 a novel species [Co{Ph2PN(iBu)PPh2-P,P′}2(CO)][Co(CO)4] (2) has been obtained. Crystal data for 2: Mr = 1140.83; triclinic, space group P , a = 12.330(2), b = 13.340(2), c = 18.122(3) Å, = 86.63(1), β = 80.75(1), γ = 84.24(1)°, V = 2924 Å3, Z = 2; R = 0.060 for 3711 reflections having I 3σ(I). The results of X-ray diffraction, ESR, variable-temperature magnetic susceptibility, conductivity, and XPS analysis support that the species 2 is a d9-d9 cage molecule-pair. The mechanism for the formation of the species 2 has been investigated initially by 31P NMR.  相似文献   

9.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

10.
The title compounds react with unidentate ligands, L, containing either phosphorus or arsenic donor atoms to yield the corresponding compounds of the type Ru(η5---C5Me4Et)(CO)LX; with didentate phosphorus donor ligands the major species formed is the bridged complex {Ru(η5---C5Me4Et)(CO)X}2{Ph2P(CH2)nPPh 2} n = 1, X = Br; n = 2, X = Cl). In contrast, unidentate ligands containing nitrogen donor atoms such as pyridine did not react with Ru(η5---C5Me4Et)(CO)2Cl although reaction with 1,10-phenanthroline or diethylenetriamine yielded the ionic products [Ru(η5---C5Me4Et)(CO)L]+Cl (L = phen or (NH2CH2CH2)2NH). Reaction of Ru(η5---C5Me4Et)(CO)2Br with AgOAc yielded the corresponding acetato complex Ru(η5---C5Me4Et)(CO)20Ac. Ru(η5--- C5Me4Et)(CO)2X reacts with AgY (Y = BF4 or PF6) in either acetone or dichloromethane to give the useful solvent intermediates [Ru(η5---C5Me4Et)(CO)2(solvent)]+Y, which readily react with ligands L to yield ionic derivatives of the type [Ru(η5---C5Me4Et)(CO)2L]+Y (where L = CO, NCMe, py, C2H4 or MeO2CCCCO2Me).  相似文献   

11.
Reaction of Me3SiMe2SiC5H5 (4), prepared from Me3SiMe2SiCl and C5H5Na, with Fe(CO)5 in refluxing xylene afforded the title compound (3). The silicon-silicon bond in 3 is exceptionally stable in refluxing xylene and also in succeeding reactions to prepare a series of its derivatives. Thus, 3 reacted with I2 in either chloroform or benzene, giving [η5-Me3SiMe2SiC5H4Fe(CO)2I] (6). Compound 3 was reduced by sodium amalgam and reacted subsequently with CH3I, PhCH2Cl, CH3COCl, PhCOCl, Cy3SnCl (Cy = cyclohexyl) and Ph3SnCl, producing [η5-Me3SiMe2SiC5H4Fe(CO)2R][7 : R = CH3 (a), PhCH2 (b), CH3CO (c), PhCO (d), Cy3Sn (e) and Ph3Sn (f), respectively]. The molecular structure of 3 has been determined by X-ray diffraction crystallography. It was found that 3 has a trans-configuration with a symmetrical centre located at the middle of the Fe---Fe bond. It is abnormal that the conformation of the disilane part around the Si---Si bond is almost eclipsed rather than staggered.  相似文献   

12.
The reaction of Ln(NO3)3·6H2O (Ln=La, Ce, Pr or Nd) with a sixfold excess of Ph3PO in acetone formed [Ln(Ph3PO)4(NO3)3]·Me2CO. The crystal structure of the La complex shows a nine-coordinate metal centre with four phosphine oxides, two bidentate and one monodentate nitrate groups, and PXRD studies show the same structure is present in the other three complexes. In CH2Cl2 or Me2CO solutions, 31P NMR studies show that the complexes are essentially completely decomposed into [Ln(Ph3PO)3(NO3)3] and Ph3PO. Similar reactions in ethanol gave [Ln(Ph3PO)3(NO3)3] only. In contrast for Ln=Sm, Eu or Gd, only the [Ln(Ph3PO)3(NO3)3] are formed from either acetone or ethanol solutions. For the later lanthanides Ln=Tb–Lu, acetone solutions of Ln(NO3)3·6H2O and Ph3PO gave [Ln(Ph3PO)3(NO3)3] only, even with a large excess of Ph3PO, but from cold ethanol [Ln(Ph3PO)4(NO3)2]NO3 (Ln=Tb, Ho–Lu) were obtained. The structure of [Lu(Ph3PO)4(NO3)2]NO3 shows an eight-coordinate metal centre with four phosphine oxides and two bidentate nitrate groups. In solution in CH2Cl2 or Me2CO the tetrakis-complexes show varying amounts of decomposition into mixtures of [Ln(Ph3PO)3(NO3)3], [Ln(Ph3PO)4(NO3)2]NO3 and Ph3PO as judged by 31P{1H} NMR spectroscopy. The [Ln(Ph3PO)3(NO3)3] also partially decompose in solution for Ln=Dy–Lu, forming some tetrakis(phosphine oxide) species.  相似文献   

13.
A study has been carried out of the catalytic activity of the systems formed by [HRh{P(OPh)3}4] or [HRh(CO){P(OPh)3}3] with the modifying ligands P(OPh)3, PPh3, diphos and Cp2Zr(CH2PPh2)2 in hydroformylation of hex-1-ene (at p = 5 bar). The best results were obtained with the system [HRh{P(OPh)3}4]+Cp2Zr(CH2PPh2)2 (75–85% yeild of aldehydes).  相似文献   

14.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

15.
Novel isonitrile derivatives of a diruthenium carbonyl complex, (μ235-guaiazulene)Ru2(CO)5 (2), were synthesized by substitution of a CO ligand by an isonitrile, and were subjected to studies on thermal and photochemical haptotropic interconversion. Treatment of 2 (a 45:55 mixture of two haptotropic isomers, 2-A and 2-B) with RNC at room temperature resulted in coordination of RNC and alternation of the coordination mode of the guaiazulene ligand to form (μ215-guaiazulene)Ru2(CO)5(CNR), 5d–5f, [5d; R=tBu, 5e; 2,4,6-Me3C6H2, or 5f; 2,6-iPr2C6H3] in moderate to good yields. Thermal dissociation of a CO ligand from 5 at 60 °C resulted in quantitative formation of a desirable isonitrile analogue of 2, (μ235-guaiazulene)Ru2(CO)4(CNR), 4d–4f, [4d; R=tBu, 4e; 2,4,6-Me3C6H2, or 4f; 2,6-iPr2C6H3], as a 1:1 mixture of the two haptotropic isomers. A direct synthetic route from 2 to 4d–4f was alternatively discovered; treatment of 2 with one equivalent of RNC at 60 °C gave 4d–4f in moderate yields. All of the new compounds were characterized by spectroscopy, and structures of 5d (R=tBu) and 4d-A (R=tBu) were determined by crystallography. Thermal and photochemical interconversion between the two haptotropic isomers of 4d–4f revealed that the isomer ratios in the thermal equilibrium and in the photostatic state were in the range of 48:52–54:46.  相似文献   

16.
The product isolated from the reaction of (μ-H)2Os3(CO)9(PPh3) with ethylene is shown to be the ethylidene complex (μ-H)2Os3(CO)9(PPh3)(μ-CHCH3) (1) rather than the ethylene complex (μ-H)(H)Os3(CO)9(PPh3)(C2H4), as previously claimed. The characterization of 1 is based on a combination of 1H and 13C NMR results. The 1H NMR data (δ 6.84 (1 HD), 2.53 (3 HC), J(CD) = 7.4 Hz) establish the presence of the ethylidene moiety, whereas detailed analysis of the 1-D and 2-D 13C NMR spectra of 13CO-enriched 1 indicates the relative positions of the ethylidene, hydride, and phosphine ligands on the triosmium framework.  相似文献   

17.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

18.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

19.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

20.
The photochemical reactions of the title complexes were studied in air-free benzene solution. In both cases photolysis leads to the production of complexes of the formula (η5-C5H5)M(PPh3)2. Both reactions are the result of the initial loss of a methyl radical from the excited state. The primary photoproduct, (η5-C5H5)MPPh3 (M=CO, Ni), then scavenges neutral ligands from the solution to yield, in the case of PPh3, (η5-C5H5)M(PPh3)2. In the absence of uncoordinated ligand in the reaction solution, the cobalt derivative reacts with the starting material to yield (η5-C5H5)Co(PPh3)2, a methyl radical and (η5-C5H5)Co(solvent)n.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号