首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The oxidation behavior of cubic Ti1-xAlxN films was improved by decreasing the Ti/Al ratio from 50/50 in the direction of the phase transition between cubic and hexagonal structure. Metastable, polycrystalline, single-phase Ti1-xAlxN films were deposited on high speed steel (HSS) substrates by reactive magnetron sputtering ion plating (MSIP). The composition of the bulk was determined by electron probe microanalysis (EPMA), the crystallographic structure by thin film X-ray diffraction (XRD). A Ti1-xAlxN film with a Ti/Al atomic ratio of 38/62 was deposited in cubic NaCl structure, whereas a further decrease of the Ti/Al ratio down to 27/73 led to a two-phase film with both cubic and hexagonal constituents. The Ti0.38Al0.62N film was oxidized in synthetic air for 1 h at 800?°C. The oxidic overlayer was analyzed by X-ray photoelectron spectroscopy (XPS) sputter depth profiling, EPMA crater edge linescan analysis, and secondary neutrals mass spectroscopy (SNMS). Scanning electron microscopy (SEM) micrographs of the cross sectional fracture were taken for morphological examination. With higher Ti content, the Ti1-xAlxN formed a TiO2-x rich sublayer beneath an Al2O3 rich toplayer, whereas the oxide layer on the Ti0.38Al0.62N film consisted of pure Al2O3. The thickness of the oxide layer was determined to 60–80 nm, about a quarter of the oxide layer thickness detected on Ti0.5Al0.5N films. The absence of a TiO2-x sublayer was also confirmed by XRD. The results show a distinct improvement of the oxidation resistance of cubic Ti1-xAlxN films by increasing the Al content from x = 0.5 to 0.62, whereas a further increase leads to the hexagonal structure, which is less suitable for tribological applications due to its tendency to form cracks during oxidation.  相似文献   

2.
Ti-Al-O layers were deposited on Si-<100> wafers at 500 °C by means of reactive magnetron sputtering ion plating (R-MSIP). An Al-target was sputtered in rf-mode and a Ti-target in dc-mode simultaneously by an oxygen/argon plasma. The influence of the Al- and Ti-sputter powers on composition, structure, and morphology of the Ti-Al-O layers and the binding states of the components were investigated. The analysis with EPMA, XPS, AES and TEM yielded the following results: Ti-Al-O coatings with different Ti, Al, and O contents in the range of TiO2 to Al2O3 were grown. TEM structure analysis revealed: the pure TiO2 film consisted of the tetragonal phases rutile and anatase; the two structures were found in the titanium-rich Ti-Al-O film, too, but with significant smaller lattice constants. The aluminium-rich Ti-Al-O film displayed the same cubic structure of γ-Al2O3 as determined for the pure Al2O3 film, but the lattice constant is significant lower. Evaluation of the TEM pattern of the film with a Ti/Al ratio of 0.8 indicates a hexagonal structure with lattice constants similar to those of κ′-Al2O3. All films are nanocrystalline and not textured. Received: 24 June 1996 / Revised: 27 December 1996 / Accepted: 4 January 1997  相似文献   

3.
A series of Cr1?xAlxN (where x denotes the atom fraction of Al in Cr1?xAlxN film) films with different Al contents have been deposited by unbalanced reactive magnetron sputtering technique. The chemical composition, microstructure, surface morphology, cross‐sectional structure, mechanical properties, thermal stability and tribological properties of the deposited films were studied by means of different techniques. It is found that with the increase of Al doping, the Al atoms either substitute the Cr atoms or occupy the interstitial sites in the CrN crystal lattice firstly, and when the Al doping content exceeds the solid solubility, superfluous Al atoms then exist in the form of amorphous or nanocrystal state in the films. Meanwhile, the grain size becomes smaller, and the microstructure gets denser because the Al doping leads to multiple crystal orientations and inhibits the grain growth. The Al doping induced solid solution hardening and grain boundary effects contribute to the high hardness of CrAlN films, and the dense structure as well as interstitial solid solution of Al, which can block the diffusion channel, endows the CrAlN films good oxidation resistance. Besides, a small amount of free Al existing in the films is favorable to improve the thermal stability without obvious loss of hardness. Finally, the relatively high hardness and good thermal stability make the Cr0.29Al0.71N film has relatively good tribological properties than CrN film under a wide temperature range, which extends the operating temperature of the CrN films in some fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This work aims to study the influence of two different types of Ti–Al target (sintered and melted) which have same nominal composition (50 at% Ti, 50 at% Al) on the properties of thin films coated by using arc ion plating (AIP) method. The hardness of the melted target was of higher value than that of the sintered target. The property of the film is related to the microstructure and phase analysis of both types of target that have quite different phases. Ti and Al metals were found as major phases and TiAl2 as minor phase in the sintered target but only TiAl compound was found in the melted target. After film coating at the same operation parameters, it was found that although the phase structures of the sintered and melted targets were quite different, the coated thin films using these targets showed the same phase structure of Ti0.5 Al0.5 N. However, the microstructure of films coated by using the sintered target showed higher density of droplets and pores than those of film produced by using the melted target. As a result, the hardness and adhesion strength of thin film produced by using the melted target were slightly higher than those values of film produced by using the sintered target. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
 Sputtered (Ti,Al)N hard coatings are successfully used for dry high speed cutting. These films show a lower oxidation rate than TiN or TiC coatings. In our work (Ti,Al)N films were deposited on WC-6%Co substrates at a temperature of 490°C by plasma-assisted chemical vapour deposition (PACVD) using a gas mixture of TiCl4/AlCl3/N2/Ar/H2. Investigation of microstructure, crystalline structure and chemical composition was carried out using SEM, WDXS, TEM, AES and XRD techniques. The chemical composition of the deposited films showed a Al to Ti ratio of 1.33. The film thickness was 5.5 μm. Films showed a fine crystalline size, the metastable fcc crystal structure and a columnar growth. The film surface was under low compressive stress up to several 100 MPa. For (Ti,Al)N/WC-Co compounds the oxidation behaviour up to 1100°C (high temperature range) was studied. Therefore, samples were annealed or rapidly heated in air and under high vacuum condition using the laser shock method. The results show decomposition of the (Ti,Al)N structure to the TiN and the AlN phases at temperature values above 900°C. Heating in air causes growing of a thin aluminum oxide layer at the film surface, which is a barrier for further oxygen diffusion to the alumina-film boundary. Additionally, at temperatures above 900°C oxidation of the WC-6%Co substrate surface was obtained in regions of opened cracks and film delamination.  相似文献   

6.
以金属Ti和V作为靶材,采用直流反应共溅射技术在室温下制备了以{211}晶面为主的锐钛矿相Ti1-xVxO2薄膜,研究了不同V靶功率对Ti1-xVxO2薄膜的薄膜成分、晶相结构和可见光催化性能的影响。研究表明,Ti1-xVxO2薄膜的晶相结构为锐钛矿相,择优取向为(211),而结晶度受V靶功率的影响。随着V靶功率的增加,薄膜中V元素含量逐渐增加,同时,晶粒和沉积速率也逐渐增加。另外,当V靶功率为150 W时,薄膜的表面粗糙度值有一个最大值。V的掺杂导致薄膜的能带间隙变窄,对光的吸收向可见光区偏移,从而有效地改善了薄膜的可见光催化能力。当V靶功率为150 W时,Ti1-xVxO2薄膜的能带间隙值为 2.82 eV,其在2 h的可见光照射下分解了80%的RhB染料。这被归结于能带间隙窄,高能晶面{211}和结晶度高的共同作用。  相似文献   

7.
Nanocomposite TiAlSiCuN films were deposited on high speed steels by filtered magnetic arc ion plating. Detailed properties of the films annealed at various temperatures are studied. After thermal annealing at different temperatures ranging from 400 to 800 °C, changes in the film micro‐structure, chemical and phase composition, surface morphology, hardness and polarization curve properties were systematically characterized by X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, nano‐indenter and electrochemical workstation, respectively. It was found that the TiAlSiCuN films could be fully oxidized at 800 °C, Al and Ti atoms all diffused outwards and formed dense protective Al2O3 and TiO2 layer. Simultaneously, the TiAlN phase gradually disappeared. The films annealed at 400 °C obtained the highest hardness because of the certain grain growth and little generated oxides. Besides, the certain formation of dense protective Al2O3 layer made the TiAlSiCuN film annealed at 600 °C present the least corrosion current density and the corrosion voltage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Metastable, single phase, polycrystalline Ti1–x Al x N hard layers were deposited on HSS-substrates with reactive magnetron sputtering ion plating (MSIP). The substrate temperature was 400 °C, the bias –60 V, the argon pressure 1.2 Pa and the sputter power 6 W cm–2. Compound targets with a Ti:Al ratio of 75/25, 50/50 and 25/75, expressed in at-%, were sputtered. The nitrogen reactive gas pressure during sputtering was 8.4 × 10–2 Pa for the 7525 target and 1.08 × 10–1 Pa for the 5050 and 2575 targets. The Ti1–x Al x N layers grew with x=0.26, 0.54 and 0.75, as determined with EPMA. Thin film XRD and HEED structure analysis showed that the Ti0.74Al0.26N layer had grown as B1 structure (a00.4214 nm) with [211] texture, the Ti0.46Al0.54N layer likewise as B1 structure (a00.4154) with [111] texture, but the Ti0.25Al0.75N as B4 structure (a00.317 nm and c00.5014 nm) with [110] texture. Pronounced columnar growth was observed with HR-SEM in the fractured surface of the cubic layers. The mean grain size, and consequently the surface roughness, diminished with increasing Al-content of the layer.Dedicated to Professor Dr. rer. nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

9.
Thin films of the ternary system Ti---Al---N, produced by PVD magnetron sputtering, show excellent wear-resistance and microhardness. It could be proved that a composition of the form (Ti, Al)N grows up a TiN lattice. Up in a 30 at.% aluminium can be solved in this lattice with decreasing lattice parameters. The ternary H-phase Ti2AlN has not been deposited as the deposition temperatures are too low.  相似文献   

10.
The study of non-hydrolytic reactions for the synthesis of Mg x Al2(1?x)Ti(1+x)O5 solid solution with x = 0.6 is reported. The reagents chosen were Al(OsBu)3, Ti(OiPr)4, TiCl4 and Mg(NO3)2·6H2O in toluene. The reactions were followed using 13C Nuclear Magnetic Resonance (NMR) spectroscopy. Sol-gel synthesized powders were calcined in air at 300, 500, 1000, and 1200°C for 1 h. The powders were analysed by X-Ray Diffraction (XRD) demonstrating the formation of a Mg0.6Al0.8Ti1.6O5 phase in samples treated at the higher calcination temperature.  相似文献   

11.
谢鹏程  黄洁 《无机化学学报》2015,31(11):2197-2204
以金属Ti和V作为靶材,采用直流反应共溅射技术在室温下制备了以{211}晶面为主的锐钛矿相Ti1-xVxO2薄膜,研究了不同V靶功率对Ti1-xVxO2薄膜的薄膜成分、晶相结构和可见光催化性能的影响。研究表明,Ti1-xVxO2薄膜的晶相结构为锐钛矿相,择优取向为(211),而结晶度受V靶功率的影响。随着V靶功率的增加,薄膜中V元素含量逐渐增加,同时,晶粒和沉积速率也逐渐增加。另外,当V靶功率为150W时,薄膜的表面粗糙度值有一个最大值。V的掺杂导致薄膜的能带间隙变窄,对光的吸收向可见光区偏移,从而有效地改善了薄膜的可见光催化能力。当V靶功率为150W时,Ti1-xVxO2薄膜的能带间隙值为2.82eV,其在2h的可见光照射下分解了80%的RhB染料。这被归结于能带间隙窄,高能晶面{211}和结晶度高的共同作用。  相似文献   

12.
Among the magnetic metal/semiconductor contacts, the Fe/GaAs system has been widely studied owing to its potential applications in electronic devices. In contrast, there are not many studies concerning the Fe/AlxGa1?xAs contact, and in particular there are no reports concerning the changes induced in the interfacial zone by the presence of Al. In this work, thin polycrystalline iron films were deposited by ion beam sputtering at room temperature on a 300 nm thick Al0.25Ga0.75As layer grown by molecular beam epitaxy onto GaAs(001). X‐ray diffraction analysis showed that the iron films are polycrystalline, and indications of a (002) texture of the film were observed. The fine scale analysis of the interface was achieved by high‐resolution transmission electron microscopy (HRTEM) observations, the results of which are compared with the physicochemical information obtained from electron‐induced x‐ray emission spectroscopy, by analysing the Al 3p valence states at the Fe/AlxGa1?xAs interface. The HRTEM experiments on cross‐section samples indicate that the interfacial zone between iron and AlGaAs is limited to <1.5 nm in thickness. X‐ray emission spectroscopy showed the presence of Al atoms in an FeAl‐like environment at the interface, and the existence of wrong bonds and point defects. The estimated width of the perturbed interface (2.0 ± 0.5 nm) is in agreement with the HRTEM results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The morphological manipulation and structural characterisation of TiO2?CMgO binary system by an aqueous particulate sol?Cgel route were reported. Different crystal structures including pure MgTiO3, mixtures of MgTiO3 and TiO2 and mixtures of MgTiO3 and Mg2TiO4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500?°C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3?C5?nm at 500?°C and around 6?nm at 700?°C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had nanocrystalline structure with the average grain size of 25?C30?nm at 500?°C depending upon the Mg:Ti molar ratio. Moreover, atomic force microscope (AFM) images presented that the thin films had a hill-valley like morphology made up of small grains.  相似文献   

14.
Additional Magnetic Examinations of Ti3?xMxO5-Phases (M = Al3+, Fe2+, Mn2+, Mg2+) with a Contribution about CrTi2O5 Ti3?xMxO5 was prepared with M = Al3+, Fe2+, Mn2+, and Mg2+. Die magnetic properties of this phases were examinated by the Faraday method in respect to the temperature. The well known magnetic effect of Ti3O5 near 450 K is shifted to lower degrees if Ti is replaced by Al, Fe, Mn, or Mg. Compared to Ti3?xVxO5 and Ti3?xCrxO5 the stability of the low temperature-form of Ti3O5 is much more reduced in Ti3?xMxO5 (M = Al, Fe, Mn, Mg). The crystal structure investigation of CrTi2O5 explained the anomalous behaviour of the Cr3+ and V3+ doped Ti3O5.  相似文献   

15.
Bi1.5MgNb1.5O7 (BMN) thin films were fabricated on Au/Ti/SiO2/Si(100) substrates using a sol?Cgel spin coating process. Thermo decomposition of the BMN precursor gel was discussed. The structures, morphologies, dielectric properties and voltage tunable dielectric properties were investigated. The deposited films showed a cubic pyrochlore structure after annealing at 550?°C or higher temperatures. With the annealing temperature increased from 500 to 800?°C, the root-mean-square surface roughness of the films increased from 0.6 to 6.8?nm. Additional phase, MgNb2O6, emerged after annealing at 800?°C due to the volatilization of Bi element. The dielectric properties and tunability of the films were annealing temperature dependent. BMN thin films annealed at 750?°C had a high dielectric constant of 135 and low dielectric loss of 0.002 at 1?MHz. The high tunability of 31.3?% and figure of merit of 156.5 were obtained under an applied electric field of 1?MV/cm at room temperature.  相似文献   

16.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

17.
《Solid State Sciences》1999,1(5):301-310
Thin polycrystalline films of cadmium chalcogenides CdSexTe1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSexTe1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.  相似文献   

18.
The vanadium dioxide (VO2) thin films were deposited on silicon (100) substrate using the pulsed laser deposition technique. The thin films were deposited at different substrate temperatures (500°C, 600°C, 700°C, and 800°C) while keeping all the other parameters constant. X‐ray diffraction confirmed the crystalline VO2 (B) and VO2 (M) phase formation at different substrate temperatures. X‐ray photoelectron spectroscopy analysis showed the presence of V4+ and V5+ charge states in all the deposited thin films which confirms that the deposited films mainly consist of VO2 and V2O5. An increase in the VO2/V2O5 ratio has been observed in the films deposited at higher substrate temperatures (700°C and 800°C). Scanning electron microscope micrographs revealed different surface morphologies of the thin films deposited at different substrate temperatures. The electrical properties showed the sharp semiconductor to metal transition behavior with approximately 2 orders of magnitude for the VO2 thin film deposited at 800°C. The transition temperature for heating and cooling cycles as low as 46.2°C and 42°C, respectively, has been observed which is related to the smaller difference in the interplanar spacing between the as‐deposited thin film and the standard rutile VO2 as well as to the lattice strain of approximately −1.2%.  相似文献   

19.
We prepared BiFe1−x Ti x O3+δ (BFTO) films by sol gel process and various oriented films were deposited on LaNiO3 coated SiO2/Si substrates with different x. The effects of Ti substitution on dielectric, ferroelectric, magnetic and leakage conduction properties in BFTO system have been studied. Enhanced ferroelectricity was observed at room temperature due to the substitution of Ti. The largest double remnant polarization of 3.8 μC/cm2 was acquired in the film with x = 0.10. Further more, it was observed that the dielectric constants were also enhanced by the substitution of Ti. The film with x = 0.10 has the largest dielectric constant below 100 kHz and Debye-like relaxation were observed in the films with x = 0.05 and 0.10. The leakage conduction was reduced with the increasing of the content of Ti. More over, the magnetism was also altered by the substitution.  相似文献   

20.
 The combination of energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) techniques in scanning electron microscope was employed to characterize the reacted interface between Ti matrix and AlN particles. Due to the high localization of EDS and EBSD, representative measurements of chemical composition and reliable determination of the crystal structure were possible for each phase in the reaction zone with complex morphology. The TiN1−x (cubic, NaCl type), Ti3AlN (cubic, perovskite type) and Ti-rich Ti3 Al (hexagonal, Ni3Sn type) phases were identified in the reaction zone after annealing at 1100 °C. EDS+EBSD combination is an efficient tool for phase analysis at the interface in reactive multicomponent systems. Received August 21, 1999. Revision November 21, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号