首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates Q-S synchronization of non-identical chaotic systems with unknown parameters and scaling function. The sufficient conditions for achieving Q-S synchronization with a double-desired scaling function of two different chaotic systems (including different dimensional systems) are derived based on the Lyapunov stability theory. By the adaptive control technique, the corresponding parameter update laws are proposed such that the Q-S synchronization of non-identical chaotic systems is to be obtained. Two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

2.
针对多输入多输出非线性最小相位系统,把自适应模糊控制和自适应模糊辨识结合起来,提出了一种自适应模糊控制方案.设计辨识器用来辨识系统的未知部分;然后由跟踪误差和辨识误差给出了参数调节规律,两种误差同时调节参数改善了系统性能.模糊逻辑系统用来估计未知函数.控制方案保证了系统的稳定性,实现了有界跟踪.仿真结果表明了该方案的可行性.  相似文献   

3.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

4.
A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

5.
Robust adaptive modified function projective synchronization between two different hyperchaotic systems is investigated, where the external uncertainties are considered and the scale factors are different from each other. The synchronization criterion is presented, which can be realized by adaptive feedback controller with compensator to eliminate the influence of uncertainties effectively. The update laws of the unknown parameters are given and the sufficient conditions are deduced based on stability theory and adaptive control. And some mistakes in the previous works are pointed out and revised. Finally, the hyperchaotic Lü and new hyperchaotic Lorenz systems are taken for example and the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

6.
This work investigates the adaptive Q–S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q–S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q–S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

7.
This paper considers the anti-synchronization problem between hyperchaotic Rössler system and hyperchaotic Lorenz system. Two anti-synchronization schemes of them are proposed. Active control is applied when system parameters are known and adaptive control is employed when system parameters are unknown or uncertain. Controllers and update laws of parameters are designed based on Lyapunov stability theory. In both cases, sufficient conditions for the anti-synchronization are obtained analytically. Finally, numerical simulations are provided to show the effectiveness of the proposed schemes.  相似文献   

8.
The horizontal platform system (HPS) is a mechanical device that exhibits rich and chaotic dynamics. In this paper, the problem of finite-time synchronization of two non-autonomous chaotic HPSs is investigated. It is assumed that both drive and response systems are disturbed by model uncertainties, external disturbances and fully unknown parameters. Appropriate update laws are proposed to undertake the unknown parameters. Using the update laws and finite-time control theory, a robust adaptive controller is derived to synchronize the two uncertain HPSs in a given finite time. Subsequently, the effects of input nonlinearities are taken into account and a robust adaptive controller is introduced to synchronize the two uncertain HPSs within a finite time. The finite-time stability and convergence of the proposed schemes are analytically proved. Two illustrative examples are presented to show the robustness and applicability of the proposed adaptive finite-time control techniques.  相似文献   

9.
针对一类 MIMO不确定非线性系统 ,基于一种修改的李亚普诺夫函数并利用 I型模糊系统的逼近能力 ,提出一种分散自适应模糊控制器设计的新方案。该方案不但能够避免现有的一些自适应模糊 /神经网络控制器设计中对控制增益一阶导数上界的要求 ,而且能够避免控制器的奇异问题。通过理论分析 ,证明闭环控制系统是全局稳定的 ,跟踪误差收敛到零。仿真结果表明了该方法的有效性。  相似文献   

10.
This paper presents the adaptive anti-synchronization of a class of chaotic complex nonlinear systems described by a united mathematical expression with fully uncertain parameters. Based on Lyapunov stability theory, an adaptive control scheme and adaptive laws of parameters are developed to anti-synchronize two chaotic complex systems. The anti-synchronization of two identical complex Lorenz systems and two different complex Chen and Lü systems are taken as two examples to verify the feasibility and effectiveness of the presented scheme.  相似文献   

11.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

12.
In this paper, the problem of chaos synchronization between two different uncertain chaotic systems with input nonlinearities is investigated. Both master and slave systems are perturbed by model uncertainties, external disturbances and unknown parameters. The bounds of the model uncertainties and external disturbances are assumed to be unknown in advance. First, a simple linear sliding surface is selected. Then, appropriate adaptive laws are derived to tackle the model uncertainties, external disturbances and unknown parameters. Subsequently, based on the adaptive laws and Lyapunov stability theory, a robust adaptive sliding mode control law is designed to guarantee the existence of the sliding motion. Two illustrative examples are presented to verify the usefulness and applicability of the proposed technique.  相似文献   

13.
A dynamic strategy is proposed to estimate parameters of chaotic systems. The dynamic estimator of parameters can be used with diverse control functions; for example, those based on: (i) Lie algebra, (ii) backstepping, or (iii) variable feedback structure (sliding-mode). The proposal has adaptive structure because of interaction between dynamic estimation of parameters and a feedback control function. Without lost of generality, a class of dynamical systems with chaotic behavior is considered as benchmark. The proposed scheme is compared with a previous low-parameterized robust adaptive feedback in terms of execution and performance. The comparison is motivated to ask: What is the suitable adaptive scheme to suppress chaos in an specific implementation? Experimental results of proposed scheme are discussed in terms of control execution and performance and are relevant in specific implementations; for example, in order to induce synchrony in complex networks.  相似文献   

14.
We present a class of high‐order weighted essentially nonoscillatory (WENO) reconstructions based on relaxation approximation of hyperbolic systems of conservation laws. The main advantage of combining the WENO schemes with relaxation approximation is the fact that the presented schemes avoid solution of the Riemann problems due to the relaxation approach and high‐resolution is obtained by applying the WENO approach. The emphasis is on a fifth‐order scheme and its performance for solving a wide class of systems of conservation laws. To show the effectiveness of these methods, we present numerical results for different test problems on multidimensional hyperbolic systems of conservation laws. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
In this paper, we present two control schemes for the unknown sampled-data nonlinear singular system. One is an observer-based digital redesign tracker with the state-feedback gain and the feed-forward gain based on off-line observer/Kalman filter identification (OKID) method. The presented control scheme is able to make the unknown sampled-data nonlinear singular system to well track the desired reference signal. The other is an active fault tolerance state-space self-tuner using the OKID method and modified autoregressive moving average with exogenous inputs (ARMAX) model-based system identification for unknown sampled-data nonlinear singular system with input faults. First, one can apply the off-line OKID method to determine the appropriate (low-) order of the unknown system order and good initial parameters of the modified ARMAX model to improve the convergent speed of recursive extended-least-squares (RELS) method. Then, based on modified ARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown sampled-data nonlinear singular system with immeasurable system state. Moreover, in order to overcome the interference of input fault, one can use a fault-tolerant control scheme for unknown sampled-data nonlinear singular system by modifying the conventional self-tuner control (STC). The presented method can effectively cope with partially abrupt and/or gradual system input faults. Finally, some illustrative examples including a real circuit system are given to demonstrate the effectiveness of the presented design methodologies.  相似文献   

16.
1. IntroductionWe are interested in construction of the central reltalng sChemes for system of noIilinearhyperbolic conservation lawswith initial data U(0, x) = Uo(x), x = (x1 ? ...! xd), based on the local relaJxation approkimationof Eq.(1.1) [2, 3, 6, 8, 9, 12].To i11ustrate the basic idea of the relaalng schemes, for the sake of simplicity in the presentation, we restrict our attention to onedimensional scalar conservaioll lawsFirst, introduce a linear hyperbollc system with a stiff sourc…  相似文献   

17.
In this work, a Large Time Step (LTS) explicit finite volume scheme designed to allow CFL > 1 is applied to the numerical resolution of 2D scalar and systems of conservation laws on triangular grids. Based on the flux difference splitting formulation, a special concern is put on finding the way of packing the information to compute the numerical solution when working on unstructured grids. Not only the cell areas but also the length of the interfaces and their orientation are questions of interest to send the information from each edge or interface. The information to update the cell variables is computed according to the local average discrete velocity and the orientation of the edges of the cells involved. The performance of these ideas is tested and compared with the conventional explicit first order and second order schemes in academic configurations for the 2D linear scalar equation and for 2D systems of conservation laws (in particular the shallow water equations) without source terms. The LTS scheme is demonstrated to preserve or even gain accuracy and save computational time with respect to the first order scheme.  相似文献   

18.
A new output feedback adaptive control scheme for multi-input and multi-output (MIMO) nonlinear systems is presented based on the high frequency gain matrix factorization and the backstepping approach with vector form. The only required prior knowledge about the high frequency gain matrix of the linear part of the system is the signs of its leading principal minors. The proposed controller is a dynamic one that only needs the measurement of the system output, and the observer and the filters are introduced in order to construct a virtual estimate of the unmeasured system states. The global stability of the closed-loop systems is guaranteed through this control scheme, and the tracking error converges to zero. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

19.
不确定非线性系统的鲁棒自适应控制器   总被引:2,自引:1,他引:1       下载免费PDF全文
在backstepping程序中,把非线性自适应控制和鲁棒控制连接起来,为参数化的严格反馈系统在不确定性存在的情况下,建立了一种鲁棒自适应控制方案.非线性自适应控制被用来处理系统的线性参数化部分,而鲁棒控制通过引进非线性阻尼项被用来处理不确定性部分.与现有的方案不同,作者给出了非线性阻尼项的无限种选择,而不是仅仅一种选择.通过使用一种合适的选择,能够设计一个鲁棒自适应控制器.它不仅能够保证对不确定性的鲁棒性,而且能够使输出误差任意小,以及用较小的控制努力取得较好的性能.  相似文献   

20.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号