首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Photochemical reaction of [CH2(eta5-C5H4)2][Rh(C2H4)2]2 1 with dmso led to the stepwise formation of [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(dmso)] 2a and [CH2(eta5-C5H4)2][Rh(C2H4)(dmso)]2 2b. Photolysis of 1 with vinyltrimethylsilane ultimately yields three isomeric products of [CH2(eta5-C5H4)2][Rh(CH2=CHSiMe3)2]2, 3a, 3b and 3c which are differentiated by the relative orientations of the vinylsilane. When this reaction is undertaken in d6-benzene, H/D exchange between the solvent and the alpha-proton of the vinylsilane is revealed. In addition evidence for two isomers of the solvent complex [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(eta2-toluene)] was obtained in these and related experiments when the photolysis was completed at low temperature without substrate, although no evidence for H/D exchange was observed. Photolysis of 1 with Et3SiH yielded the sequential substitution products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiEt3)H] 4a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H]2 4b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiEt3)H][Rh(SiEt3)2(H)2] 4c and [CH2(eta5-C5H4)2][Rh(SiEt3)2(H)2]2 4d; deuteration of the alpha-ring proton sites, and all the silyl protons, of 4d was demonstrated in d6-benzene. This reaction is further complicated by the formation of two Si-C bond activation products, [CH2(eta5-C5H4)2][RhH(mu-SiEt2)]2 5 and [CH2(eta5-C5H4)2][(RhEt)(RhH)(mu-SiEt2)2] 6. Complex 5 was also produced when 1 was photolysed with Et2SiH2. When the photochemical reactions with Et3SiH were repeated at low temperatures, two isomers of the unstable C-H activation products, the vinyl hydrides [CH2(eta5-C5H4)2][{Rh(SiEt3)H}{Rh(SiEt3)}(mu-eta1,eta2-CH=CH2)] 7a and 7b, were obtained. Thermally, 4c was shown to form the ring substituted silyl migration products [(eta5-C5H4)CH2(C5H3SiEt3)][Rh(SiEt3)2(H)2]2 8 while 4b formed [CH2(C5H3SiEt3)2][Rh(SiEt3)2(H)2]2 (9a and 9b) upon reaction with excess silane. The corresponding photochemical reaction with Me3SiH yielded the expected products [CH2(eta5-C5H4)2][Rh(C2H4)2][Rh(C2H4)(SiMe3)H] 10a, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H]2 10b, [CH2(eta5-C5H4)2][Rh(C2H4)(SiMe3)H][Rh(SiMe3)2(H)2] 10c and [CH2(eta5-C5H4)2][Rh(SiMe3)2(H)2]2 10d. However, three Si-C bond activation products, [CH2(eta5-C5H4)2][(RhMe)(RhH)(mu-SiMe2)2] 11, [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhMe)(mu-SiMe2)2] 12 and [CH2(eta5-C5H4)2][(Rh{SiMe3})(RhH)(mu-SiMe2)2] 13 were also obtained in these reactions.  相似文献   

2.
Ligand substitution of RuCl2[P(C6H5)3]3 and Cp*RuCl(isoprene) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) complexes with hydroxymethylphosphines was investigated to develop new catalyst systems for CO2 hydrogenation. A reaction of P(C6H5)2CH2OH with RuCl2[P(C6H5)3]3 in CH2Cl2 gave Ru(H)Cl(CO)[P(C6H5)2CH2OH]3 (1), which was characterized by NMR spectroscopy and X-ray crystallographic analysis. An isotope labeling experiment using P(C6H5)213CH2OH indicated that the carbonyl moiety in complex 1 originated from formaldehyde formed by degradation of the hydroxymethylphosphine. Elimination of formaldehyde from PCy2CH2OH (Cy=cyclohexyl) was also promoted by treatment of RuCl2[P(C6H5)3]3 in ethanol to give RuCl2(PHCy2)4 under mild conditions. On the other hand, the substitution reaction using Cp*RuCl(isoprene) with the hydroxymethylphosphine ligands proceeded smoothly with formation of Cp*RuCl(L)2 [2a-2c; L=P(C6H5)2CH2OH, PCy(CH2OH)2, and P(CH2OH)3] in good yields. The isolable hydroxymethylphosphine complexes 1 and 2 efficiently catalyzed the hydrogenative amidation of supercritical carbon dioxide (scCO2) to N,N-dimethylformamide (DMF).  相似文献   

3.
Treatment of the secondary phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) with BH(3)·SMe(2) gives the corresponding phosphine-borane {(Me(3)Si)(2)CH}PH(BH(3))(C(6)H(4)-2-SMe) (9) as a colourless solid. Deprotonation of 9 with n-BuLi, PhCH(2)Na or PhCH(2)K proceeds cleanly to give the corresponding alkali metal complexes [[{(Me(3)Si)(2)CH}P(BH(3))(C(6)H(4)-2-SMe)]ML](n) [ML = Li(THF), n = 2 (10); ML = Na(tmeda), n = ∞ (11); ML = K(pmdeta), n = 2 (12)] as yellow/orange crystalline solids. X-ray crystallography reveals that the phosphido-borane ligands bind the metal centres through their sulfur and phosphorus atoms and through the hydrogen atoms of the BH(3) group in each case, leading to dimeric or polymeric structures. Compounds 10-12 are stable towards both heat and ambient light; however, on heating in toluene solution in the presence of 10, traces of free phosphine-borane 9 are slowly converted to the free phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) (5) with concomitant formation of the corresponding phosphido-bis(borane) complex [{(Me(3)Si)(2)CH}P(BH(3))(2)(C(6)H(4)-2-SMe)]Li (14).  相似文献   

4.
The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.  相似文献   

5.
Reactions of [RhH(PEt3)3] (1) or [RhH(PEt3)4] (2) with pentafluoropyridine or 2,3,5,6-tetrafluoropyridine afford the activation product [Rh(4-C5NF4)(PEt3)3] (3). Treatment of 3 with CO, 13CO or CNtBu effects the formation of trans-[Rh(4-C5NF4)(CO)(PEt3)2] (4a), trans-[Rh(4-C5NF4)(13CO)(PEt3)2] (4b) and trans-[Rh(4-C5NF4)(CNtBu)(PEt3)2] (5). The rhodium(III) compounds trans-[RhI(CH3)(4-C5NF4)(PEt3)2] (6a) and trans-[RhI(13CH3)(4-C5NF4)(PEt3)2] (6b) are accessible on reaction of 3 with CH3I or 13CH3I. In the presence of CO or 13CO these complexes convert into trans-[RhI(CH3)(4-C5NF4)(CO)(PEt3)2] (7a), trans-[RhI(13CH3)(4-C5NF4)(CO)(PEt3)2] (7b) and trans-[RhI(13CH3)(4-C5NF4)(13CO)(PEt3)2] (7c). The trans arrangement of the carbonyl and methyl ligand in 7a-7c has been confirmed by the 13C-13C coupling constant in the 13C NMR spectrum of 7c. A reaction of 4a or 4b with CH3I or 13CH3I yields the acyl compounds trans-[RhI(COCH3)(4-C5NF4)(PEt3)2] (8a) and trans-[RhI(13CO13CH3)(4-C5NF4)(PEt3)2] (8b), respectively. Complex 8a slowly reacts with more CH3I to give [PEt3Me][Rh(I)2(COCH3)(4-C5NF4)(PEt3)](9). On heating a solution of 7a, the complex trans-[RhI(CO)(PEt3)2] (10) and the C-C coupled product 4-methyltetrafluoropyridine (11) have been obtained. Complex 8a also forms 10 at elevated temperatures in the presence of CO together with the new ketone 4-acetyltetrafluoropyridine (12). The structures of the complexes 3, 4a, 5, 6a, 8a and 9 have been determined by X-ray crystallography. 19F-1H HMQC NMR solution spectra of 6a and 8a reveal a close contact of the methyl groups in the phosphine to the methyl or acyl ligand bound at rhodium.  相似文献   

6.
Cyclodiphosphazanes containing phosphine or phosphine plus amide functionalities {((t)BuNP(OC(6)H(4)PPh(2)-o)}(2) (3), {(t)BuNP(OCH(2)CH(2)PPh(2))}(2) (4), {(t)BuHN((t)BuNP)(2)OC(6)H(4)PPh(2)-o} (5), and {(t)BuHN((t)BuNP)(2)OCH(2)CH(2)PPh(2)} (6) were synthesized by reacting cis-{(t)BuNPCl}(2) (1) and cis-[(t)BuHN((t)BuNP)(2)Cl] (2) with corresponding phosphine substituted nucleophiles. The reactions of 3 and 5 with excess of elemental sulfur or selenium produce the corresponding tetra and trichalcogenides, {((t)BuNP(E)(OC(6)H(4)P(E)Ph(2)-o)}(2) (7, E = S; 8, E = Se) and {(t)BuHN((t)BuNP)(2)OC(6)H(4)P(E)Ph(2)-o} (9, E = S; 10, E = Se), respectively, in quantitative yields. The reactions between 3 and [Rh(COD)Cl](2) or [M(COD)Cl](2) (M = Pd or Pt) afford bischelated complexes [Rh(CO)Cl{(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (11), and [MCl(2){(t)BuNP(OC(6)H(4)PPh(2)-o)}](2) (12, M = Pd; 13, M = Pt) in good yield. The 1 : 2 reaction between 3 and [PdCl(η(3)-C(3)H(5))](2) in dichloromethane resulted initially in the formation of a tripalladium complex of the type [Pd(3)Cl(4)(η(3)-C(3)H(5))(2){(t)BuNPOC(6)H(4)PPh(2)}(2)] (14a) which readily reacts with moisture to form an interesting binuclear complex, [Cl(2)Pd{μ-(PPh(2)C(6)H(4)OP(μ-(t)BuN)(2)P(O)}(μ-Cl)Pd(OC(6)H(4)PPh(2))] (14b). One of the palladium(II) atoms forms a simple six-membered chelate ring, whereas the other palladium(II) atom facilitates the moisture assisted cleavage of one of the endocyclic P-O bonds followed by the oxidation of P(III) to P(V) thus forming a Pd-P σ-bond. The broken ortho-phosphine substituted phenoxide ion forms a five-membered palladacycle with the same palladium(II) atom. Similar reaction of 5 with [PdCl(η(3)-C(3)H(5))](2) also affords a binuclear complex [{PdCl(η(3)-C(3)H(5))}(t)BuNH{(t)BuNP}(2)OC(6)H(4)PPh(2){PdCl(2)}] (15) containing a PdCl(2) moiety which forms a six-membered chelate ring via ring-phosphorus and PPh(2) moieties on one side and a PdCl(η(3)-C(3)H(5)) fragment coordinating to amide bound phosphorus atom on the other side of the ring. Treatment of 3 with four equivalents of AuCl(SMe(2)) produces a tetranuclear complex, [(AuCl)(4){(t)BuNP(OC(6)H(4)PPh(2))}(2)] (16), whereas a 1 : 3 reaction between 5 and AuCl(SMe(2)) leads to the formation of a trinuclear complex, [(t)BuNH{(t)BuNP(AuCl)}(2)OC(6)H(4)P(AuCl)Ph(2)] (17). The crystal structures of 3, 5, 9-11 and 13-17 are reported.  相似文献   

7.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

8.
The novel water-soluble ruthenium(II) complexes [RuCl(2)(eta(6)-arene)[P(CH(2)OH)(3)]]2a-c and [RuCl(eta(6)-arene)[P(CH(2)OH)(3)](2)][Cl]3a-c have been prepared in high yields by reaction of dimers [[Ru(eta(6)-arene)(micro-Cl)Cl](2)](arene = C(6)H(6)1a, p-cymene 1b, C(6)Me(6)1c) with two or four equivalents of P(CH(2)OH)(3), respectively. Complexes 2/3a-c are active catalysts in the redox isomerization of several allylic alcohols into the corresponding saturated carbonyl compounds under water/n-heptane biphasic conditions. Among them, the neutral derivatives [RuCl(2)(eta(6)-C(6)H(6))[P(CH(2)OH)(3)]]2a and [RuCl(2)(eta(6)-p-cymene)[P(CH(2)OH)(3)]]2b show the highest activities (TOF values up to 600 h(-1); TON values up to 782). Complexes 2/3a-c also catalyze the hydration of terminal alkynes.  相似文献   

9.
Facile substitution reactions of the two water ligands in the hydrophilic tetradentate phosphine complex cis-[Fe{(HOCH2)P{CH2N(CH2P(CH2OH)2)CH2}2P(CH2OH)}(H2O)2](SO4) (abbreviated to [Fe(L1)(H2O)2](SO4), 1) take place upon addition of Cl-, NCS-, N3(-), CO3(2-) and CO to give [Fe(L1)X2] (2, X = Cl; 4, X = NCS; 5, X=N3), [Fe(L1)(kappa2-O(2)CO)], 6 and [Fe(L1)(CO)2](SO4), 7. The unsymmetrical mono-substituted intermediates [Fe(L1)(H2O)(CO)](SO(4)) and [Fe(L(1))(CO)(kappa(1)-OSO(3))] (8/9) have been identified spectroscopically en-route to 7. Treatment of 1 with acetic anhydride affords the acylated derivative [Fe{(AcOCH2)P{CH2N(CH2P(CH2OAc)2)CH2}2P(CH2OAc)}(kappa2-O(2)SO2)] (abbreviated to [Fe(L2)(kappa2-O(2)SO2)], 10), which has increased solubility over 1 in both organic solvents and water. Treatment of 1 with glycine does not lead to functionalisation of L1, but substitution of the aqua ligands occurs to form [Fe(L(1))(NH(2)CH(2)CO(2)-kappa(2)N,O)](HSO(4)), 11. Compound 10 reacts with chloride to form [Fe(L(2))Cl(2)] 12, and 12 reacts with CO in the presence of NaBPh4 to form [Fe(L2)Cl(CO)](BPh4) 13b. Both of the chlorides in 12 are substituted on reaction with NCS- and N3(-) to form [Fe(L2)(NCS)2] 14 and [Fe(L2)(N3)2] 15, respectively. Complexes 2.H2O, 4.2H2O, 5.0.812H2O, 6.1.7H2O, 7.H2O, 10.1.3CH3C(O)CH3, 12 and 15.0.5H2O have all been crystallographically characterised.  相似文献   

10.
The synthesis and structures of a series of new water-soluble phosphine ligands based on 1,3,5-triaza-7-phosphaadamantane (PTA) are described. Insertion of aldehydes or ketones into the C-Li bond of 1,3,5-triaza-7-phosphaadamantan-6-yllithium (PTA-Li) resulted in the formation of a series of slightly water-soluble beta-phosphino alcohols (PTA-CRR'OH, R = C6H5, C(6)H(4)OCH(3), ferrocenyl; R' = H, C(6)H(5), C(6)H(4)OCH(3)) derived from the heterocyclic phosphine PTA. Insertion of CO(2) yielded the highly water-soluble carboxylate PTA-CO(2)Li, S(2)5 degrees approximately 800 g/L. The compounds have been fully characterized in the solid state by X-ray crystallography and in solution by multinuclear NMR spectroscopy. The addition of PTA-Li to symmetric ketones results in a racemic mixture of PTA-CR(2)OH ligands with a single resonance in the (31)P{(1)H} NMR spectrum between -95 and -97 ppm. The addition of PTA-Li to aldehydes results in a mixture of diasteromeric compounds, PTA-CHROH, with two (31)P{(1)H} NMR resonances between -100 and -106 ppm. Three (eta(6)-arene)RuCl(2)(PTA-CRR'OH) complexes of these ligands were synthesized and characterized, with the ligands binding in a kappa1 coordination mode. All the ligands and ruthenium complexes are slightly soluble in water with S25 degrees = 3.9-11.1 g/L for the PTA-CRR'OH ligands and S(25) degrees = 3.3-14.1 g/L for the (eta(6)-arene)RuCl(2)(PTA-CRR'OH) complexes.  相似文献   

11.
Treatment of the hydrido(dihydrogen) compound [RuHCl(H2)(PCy3)2] 1 with alkynes RC[triple bond, length as m-dash]CH (R=H, Ph) afforded the hydrido(vinylidene) complexes [RuHCl(=C=CHR)(PCy3)2] 2, 3 which react with HCl or [HPCy3]Cl to give the corresponding Grubbs-type ruthenium carbenes [RuCl2(=CHCH2R)(PCy3)2] 4, 5. The reaction of 2 (R=H) with DCl, or D2O in the presence of chloride sources, led to the formation of [RuCl2(=CHCH2D)(PCy3)2] 4-d1. Based on these observations, a one-pot synthesis of compounds 4 and 5 was developed using RuCl3.3H2O as the starting material. The hydrido(vinylidene) derivative 2 reacted with CF3CO2H and HCN at low temperatures to yield the carbene complexes [RuCl(X)(=CHCH3)(PCy3)2] 6, 7, of which 7 (X=CN) was characterized crystallographically. Salt metathesis of 2 with CF3CO2K and KI led to the formation of [RuH(X)(=C=CH2)(PCy3)2] 8, 9. The bis(trifluoracetato) and the diiodo compounds [RuX2(=CHCH3)(PCy3)2] 10, 11 as well as the new phosphine P(thp)3 12 (thp=4-tetrahydropyranyl) and the corresponding complex [RuCl2(=CHCH3){P(thp)3}2] 14 were also prepared. The catalytic activity of the ruthenium carbenes 4-7, 10, 11 and 14 in the olefin cross-metathesis of cyclopentene and allyl alcohol was investigated.  相似文献   

12.
Cyclopentadienyl (Cp) ligands in moderately strained [1]- and [2]ferrocenophanes [Fe{(eta5-C5H4)2(ERx)y}: Fe{(eta5-C5H4)2SiMe2} (1), Fe{(eta5-C5H4)CH2}2 (10)] and highly strained [2]ruthenocenophanes [Ru{(eta5-C5H4)CR2}2 {R = H (15), Me (16)}] are susceptible to partial substitution by P donors and form mixed-hapticity metallocycles-[M(L2){(eta5-C5H4)(ERx)y(eta1-C5H4)}]: [Fe(dppe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (5), [Fe(dmpe){(eta5-C5H4)SiMe2(eta1-C5H4)}] (6), [Fe(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (11), [Ru(dmpe){(eta5-C5H4)(CH2)2(eta1-C5H4)}] (17), [Ru(dmpe){(eta5-C5H4)(CMe2)2(eta1-C5H4)}] (18), and [Ru(PMe3)2{(eta5-C5H4)(CH2)2(eta1-C5H4)}] (19)-through haptotropic reduction of one eta5-, pi-bound Cp to eta1, sigma-coordination. These reactions are strain-controlled, as highly ring-tilted [2]ruthenocenophanes 15 and 16 [tilt angles (alpha) approximately 29-31 degrees ] react without irradiation to form thermodynamically stable products, while moderately strained [n]ferrocenophanes 1 and 10 (alpha approximately 19-22 degrees ) require photoactivation. The iron-containing photoproducts 5 and 11 are metastable and thermally retroconvert to their strained precursors and free phosphines at 70 degrees C. In contrast, the unprecedented ring-opening polymerization (ROP) of the essentially ring-strain-free adduct 6 to afford poly(ferrocenyldimethylsilane) [Fe(eta5-C5H4)2SiMe2]n (Mw approximately 5000 Da) was initiated by the thermal liberation of small amounts of P donor. Unlike reactions with bidentate analogues, monodentate phosphines promoted photolytic ROP of ferrocenophanes 1 and 10. MALDI-TOF analysis suggested a cyclic structure for the soluble poly(ferrocenyldimethylsilane), 8-cyclic, produced from 1 in this manner. While the polymer likewise produced from 10 was insoluble, the initiation step in the ROP process was modeled by isolation of a tris(phosphine)-substituted ring-opened ferrocenophane [Fe(PMe3)3{(eta5-C5H4)(CH2)2(C5H5)}][OCH2CH3] (13[OCH2CH3]) generated by irradiation of 10 and PMe3 in a protic solvent (EtOH). Studies of the cation 13 revealed that the Fe center reacts with a Cp- anion with loss of the phosphines to form [Fe(eta5-C5H5){(eta5-C5H4)(CH2)2(C5H5)}] (14) under conditions identical to those of the ROP experiments, confirming the likelihood of "back-biting" reactions to yield cyclic structures or macrocondensation to produce longer chains.  相似文献   

13.
Cotton FA  Murillo CA  Wang X  Yu R 《Inorganic chemistry》2004,43(26):8394-8403
Reaction of racemic cis-Rh(2)(C(6)H(4)PPh(2))(2)(OAc)(2)(HOAc)(2) with excess Me(3)OBF(4) in CH(3)CN results in the formation of racemic cis-[Rh(2)(C(6)H(4)PPh(2))(2)(CH(3)CN)(6)](BF(4))(2).0.5H(2)O (1.0.5H(2)O), an ionic dirhodium complex which has two cisoid nonlabile orthometalated phosphine bridging anions and six labile CH(3)CN ligands in equatorial and axial positions. Reactions of 1 with tetraethylammonium salts of the linear dicarboxylates, oxalate, terephthalate, and 4,4'-biphenyl-dicarboxylate, in organic solvents, produced racemic crystals of the triangular compounds [Rh(2)(C(6)H(4)PPh(2))(2)](3)(C(2)O(4))(3)(py)(6).6MeOH.H(2)O (2.6MeOH.H(2)O), [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)CO(2))(3)(DMF)(6).6.5DMF.0.5H(2)O (3.6.5DMF.0.5H(2)O), and [Rh(2)(C(6)H(4)PPh(2))(2)](3)(O(2)CC(6)H(4)C(6)H(4)CO(2))(3)(py)(6).4.5CH(3)OH.0.75H(2)O (4.4.5CH(3)OH.0.75H(2)O), respectively. All compounds are electrochemically active. The relative chiralities of the dirhodium units in each triangle have been established using a combination of data from X-ray crystallography and (31)P NMR spectroscopy.  相似文献   

14.
The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N',N'-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.  相似文献   

15.
Reaction of the proligand Ph2PN(SiMe3)2 (L1) with WCl6 gives the oligomeric phosphazene complex [WCl4(NPPh2)]n, 1 and subsequent reaction with PMe2Ph or NBu4Cl gives [WCl4(NPPh2)(PMe2Ph)] (2) or [WCl5(NPPh2)][NBu4] (3), respectively. DF calculations on [WCl5(NPPh2)][NBu4] show a W=N double bond (1.756 A) and a P-N bond distance of 1.701 A, which combined with the geometry about the P atom suggests, there is no P-N multiple bonding. Reaction of L1 with [ReOX3(PPh3)2] in MeCN (X = Cl or Br) gives [ReX2(NC(CH3)P(O)Ph2)(MeCN)(PPh3)](X = Cl, 4, X = Br, 5) which contains the new phosphorylketimido ligand. It is bound to the rhenium centre with a virtually linear Re-N-C arrangement (Re-N-C angle = 176.6 degrees, when X = Cl) and there is multiple bonding between Re and N (Re-N = 1.809(7) A when X = Cl). The proligand Ph2PNHNMe2(L2H) reacts with [(C5H5)TiCl3] to give [(C5H5)TiCl2(Me2NNPPh2)] (6). An X-ray crystal structure of the complex shows the ligand (L2) is bound by both nitrogen atoms. Reaction of the proligands Ph2PNHNR2[R2 = Me2 (L2H), -(CH2CH2)2NCH3 (L3H), (CH2CH2)2CH2 (L4H)] with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave [RuCl2(eta6-p-MeC6H4iPr)L] {L = L2H (7), L3H (8), L4H (9)}. The X-ray crystal structures of 7-9 confirmed that the phosphinohydrazine ligand is neutral and bound via the phosphorus only. Reaction of complexes 7-9 with AgBF4 resulted in chloride ion abstraction and the formation of the cationic species [RuCl(6-p-MeC6H4iPr)(L)]+ BF4- {(L = L2H (10), L3H (11), L4H (12)}. Finally, reaction of complex 6 with [{RuCl(mu-Cl)(eta6-p-MeC6H4iPr)}2] gave the binuclear species [(eta6-p-MeC6H4iPr)Cl2Ru(mu2,eta3-Ph2PNNMe2)TiCl2(C5H5)], 13.  相似文献   

16.
The reaction of [[RhCl(C(8)H(14))(2)](2)] (2) with iPr(2)PCH(2)CH(2)C(6)H(5) (L(1)) led, via the isolated dimer [[RhCl(C(8)H(14))(L(1))](2)] (3), to a mixture of three products 4 a-c, of which the dinuclear complex [[RhCl(L(1))(2)](2)] (4 a) was characterized by Xray crystallography. The mixture of 4a-c reacts with CO, ethene, and phenylacetylene to give the square-planar compounds trans-[RhCl(L)(L(1))(2)] (L=CO (5), C(2)H(4) (6), C=CHPh (9)). The corresponding allenylidene(chloro) complex trans-[RhCl(=C=C=CPh(2))(L(1))(2)] (11), obtained from 4 a-c and HC triple bond CC(OH)Ph(2) via trans-[RhCl[=C=CHC(OH)Ph(2)](L(1))(2)] (10), could be converted stepwise to the related hydroxo, cationic aqua, and cationic acetone derivatives 12-14, respectively. Treatment of 2 and [[RhCl(C(2)H(4))(2)](2)] (7) with two equivalents of tBu(2)PCH(2)CH(2)C(6)H(5) (L(2)) gave the dimers [[RhCl(C(8)H(14))(L(2))](2)] (15) and [[RhCl(C(2)H(4))(L(2))](2)] (16), which both react with L(2) in the molar ratio of 1:2 to afford the five-coordinate aryl(hydrido)rhodium(III) complex [RhHCl(C(6)H(4)CH(2)CH(2)PtBu(2)-kappa(2)C,P)(L(2))] (17) by C-H activation. The course of the reactions of 17 with CO, H(2), PhC triple bond CH, HCl, and AgPF(6), leading to the compounds 19-21, 24, and 25 a, respectively, indicate that the coordinatively unsaturated isomer of 17 with the supposed composition [RhCl(L(2))(2)] is the reactive species. Labeling experiments using D(2), DCl, and PhC triple bond CD support this proposal. With either [Rh(C(8)H(14))(eta(6)-L(2)-kappaP]PF(6) or [Rh(C(2)H(4))(eta(6)-L(n)-kappaP]PF(6) (n=1 and 2) as the starting materials, the corresponding halfsandwich-type complexes 27, 28, and 32 were obtained. The nonchelating counterpart of the dihydrido compound 32 with the composition [RhH(2)(PiPr(3))(eta(6)-C(6)H(6))]PF(6) (35) was prepared stepwise from [Rh(C(2)H(4))(PiPr(3))(eta(6)-C(6)H(6))]PF(6) and H(2) in acetone via the tris(solvato) species [RhH(2)(PiPr(3))(acetone)(3)]PF(6) (34) as intermediate. The synthesis of the bis(chelate) complex [Rh(eta(4)-C(8)H(12))(C(6)H(5)OCH(2)CH(2)PtBu(2)-kappa(2)O,P)]BF(4) (39) is also described. Besides 4 a, the compounds 17, 25 a, and 39 have been characterized by Xray crystal structure analysis.  相似文献   

17.
At pH = 1 and 25 degrees C, the Fenton-like reactions of Fe(aq)(2+) with hydroperoxorhodium complexes LRh(III)OOH(2+) (L = (H(2)O)(NH(3))(4), k = 30 M(-1) s(-1), and L = L(2) = (H(2)O)(meso-Me(6)-[14]aneN(4)), k = 31 M(-1) s(-1)) generate short-lived, reactive intermediates, believed to be the rhodium(IV) species LRh(IV)O(2+). In the rapid follow-up steps, these transients oxidize Fe(aq)(2+), and the overall reaction has the standard 2:1 [Fe(aq)(2+)]/[LRhOOH(2+)] stoichiometry. Added substrates, such as alcohols, aldehydes, and (NH(3))(4)(H(2)O)RhH(2+), compete with Fe(aq)(2+) for LRh(IV)O(2+), causing the stoichiometry to change to <2:1. Such competition data were used to determine relative reactivities of (NH(3))(4)RhO(2+) toward CH(3)OH (1), CD(3)OH (0.2), C(2)H(5)OH (2.7), 2-C(3)H(7)OH (3.4), 2-C(3)D(7)OH (1.0), CH(2)O (12.5), C(2)H(5)CHO (45), and (NH(3))(4)RhH(2+) (125). The kinetics and products suggest hydrogen atom abstraction for (NH(3))(4)RhO(2+)/alcohol reactions. A short chain reaction observed with C(2)H(5)CHO is consistent with both hydrogen atom and hydride transfer. The rate constant for the reaction between Tl(aq)(III) and L(2)Rh(2+) is 2.25 x 10(5) M(-1) s(-1).  相似文献   

18.
The O-functionalised tertiary phosphine {(Me3Si)2CH}P(C6H4-2-CH2OMe)2 (9) is accessible via the reaction of {(Me3Si)2CH}PCl2 with two equivalents of in situ generated 2-LiC6H4CH2OMe. Phosphine 9 is readily deprotonated by Bu(n)Li to give the lithium phosphinomethanide [[{(Me3Si)2C}P(C6H4-2-CH2OMe)2]Li] (13), which undergoes metathesis reactions with the alkoxides MOR [M = Na, K, R = Bu(t); M = Rb, R = 2-ethylhexyl] to give the heavier alkali metal phosphinomethanides [[{(Me3Si)2C}P(C6H4-2-CH2OMe)2]M]n in good yields [M = Na (14), n= 2; M = K (15), Rb (16), n=[infinity]]. Compounds 9, [{(Me3Si)2CH}P(C6H4-2-CH2OMe)2LiBr]2 (10), and 14-16 have been studied by X-ray crystallography; in the solid state 14 adopts a dimeric structure, whereas 15 and 16 crystallise as one-dimensional polymers.  相似文献   

19.
The half-sandwich complexes [(eta5-C5H5)RuCl(DPEphos)] (1) and [{(eta6-p-cymene)RuCl2}2(mu-DPEphos)] (2) were synthesized by the reaction of bis(2-(diphenylphosphino)phenyl) ether (DPEphos) with a mixture of ruthenium trichloride trihydrate and cyclopentadiene and with [(eta6-p-cymene)RuCl2]2, respectively. Treatment of DPEphos with cis-[RuCl2(dmso)4] afforded fac-[RuCl2(kappa3-P,O,P-DPEphos)(dmso)] (3). The dmso ligand in 3 can be substituted by pyridine, 2,2'-bipyridine, 4,4'-bipyridine, and PPh3 to yield trans,cis-[RuCl2(DPEphos)(C5H5N)2] (4), cis,cis-[RuCl2(DPEphos)(2,2'-bipyridine)] (5), trans,cis-[RuCl2(DPEphos)(mu-4,4'-bipyridine)]n (6), and mer,trans-[RuCl2(kappa3-P,P,O-DPEphos)(PPh3)] (7), respectively. Refluxing [(eta6-p-cymene)RuCl2]2 with DPEphos in moist acetonitrile leads to the elimination of the p-cymene group and the formation of the octahedral complex cis,cis-[RuCl2(DPEphos)(H2O)(CH3CN)] (8). The structures of the complexes 1-5, 7, and 8 are confirmed by X-ray crystallography. The catalytic activity of these complexes for the hydrogenation of styrene is studied.  相似文献   

20.
[Rh(III)H{(tBu(2)PCH(2)SiMe(2)NSiMe(2)CH(2)PtBu{CMe(2)CH(2)})}], ([RhH(PNP*)]), reacts with O(2) in the time taken to mix the reagents to form a 1:1 eta(2)-O(2) adduct, for which O--O bond length is discussed with reference to the reducing power of [RhH(PNP*)]; DFT calculations faithfully replicate the observed O-O distance, and are used to understand the oxidation state of this coordinated O(2). The reactivity of [Rh(O(2))(PNP)] towards H(2), CO, N(2), and O(2) is tested and compared to the associated DFT reaction energies. Three different reagents effect single oxygen atom transfer to [RhH(PNP*)]. The resulting [RhO(PNP)], characterized at and above -60 degrees C and by DFT calculations, is a ground-state triplet, is nonplanar, and reacts, above about +15 degrees C, with its own tBu C--H bond, to cleanly form a diamagnetic complex, [Rh(OH){N(SiMe(2)CH(2)PtBu(2))(SiMe(2)CH(2)PtBu{CMe(2)CH(2)})}].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号