首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Highly sensitive and specific determination of trace amounts of a polymeric hindered amine light stabilizer (HALS) in polypropylene (PP) materials could be established by improving reactive thermal desorption-gas chromatography (RTD-GC) in the presence of an organic alkali, tetramethylammonium hydroxide. By using nitrogen-phosphorus detection, highly selective detection of the HALS-related components was attained. In addition, the use of a polar poly(ethylene glycol) separation column alleviated the adsorption of minor specific pyrolysis products. This modified RTD-GC method allowed the determination of the polymeric HALS (Mr 1900) in PP even for trace concentrations between 100 and 500 ppm, through observing selectively the characteristic products containing a tetramethylpiperidine moiety, which had been impossible to detect under the previous RTD-GC conditions using a non-polar separation column and conventional flame ionization detection.  相似文献   

2.
A small amount of an oligomeric hindered amine light stabilizer (HALS) (Adekastab LA-68LD) in polypropylene (PP) materials was directly determined by solid sampling matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using an internal standard method. First the matrix reagent (dithranol), 20 mg, and the empirically selected internal standard, angiotensin I (MW = 1296.5), 5 microg, were premixed in the solid state. The matrix mixture was then co-ground with the PP sample containing the HALS in liquid nitrogen using a freezer mill. The powdered sample mixture was spotted on the sample plate, suspended in ion-exchanged water, dried to adhere on the plate, and subjected to MALDI-MS. Three series of the HALS components accompanied by the oxidized species were clearly observed as their molecular ions (M*+)) along with that of the internal standard in the mass spectra. A fairly good linear relationship (R2 = 0.9991) with a relative standard deviation of ca. 11% was observed between the relative peak intensities of the HALS components and the HALS contents ranging from 0.1-2.5 wt%, which could be used as the calibration line to determine the HALS content in PP composites directly by MALDI-MS. The UV-exposed PP composite samples were evaluated by this method to interpret the photostabilizing action of HALS in the PP materials based on the observed change in the relative abundances of the original and oxidized HALS components as a function of UV-exposure time.  相似文献   

3.
The influence of a non-halogenated intumescent fire retardant on the photooxidation of polypropylene is reported. The photooxidation of polypropylene stabilised with a phenolic antioxidant and two redox antioxidants (HALS), without and with the flame retardant has been studied. The chemical modifications resulting from UV-light exposure with wavelengths above 300 nm in the presence of oxygen were followed by IR and UV-visible spectroscopies. Special attention was given to the influence of each component on the rate of oxidation of the polymeric matrix. The photooxidation of the fire-retarded polymer can be described by two independent phenomena: the photooxidation of the intumescent agent and the photooxidation of the polymer. The results obtained offer new insight in the formulation of stabilised fire-retarded PP for outdoors applications.  相似文献   

4.
In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film–matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.  相似文献   

5.
The combination of organophillised montmorillonite (MMT), synthetic hydromagnesite and aluminium hydroxide (ATH) as flame retardant system for polyethylene-based materials was studied and compared with a similar system with magnesium hydroxide, ATH and MMT. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), limiting oxygen index (LOI) and cone calorimeter tests. The results indicated that the addition of montmorillonite makes it possible to reduce the total filler content to achieve the flame retardant requirements. The thermal stability of filled LDPE/EVA blends increases to a higher extent for the samples containing MMT. In the cone calorimeter tests we observed a reduction of the peak heat release rate for the sample containing montmorillonite in comparison with a sample with higher filler loading without this nanoclay. An increase of the stability of the char formed could be responsible for this favourable behaviour when montmorillonite is added.In addition, mechanical properties significantly improved for the composites containing montmorillonite both for the filler loading reduction and the reinforcement effect of the nanoclay.  相似文献   

6.
瞿保钧 《高分子科学》2010,28(4):563-571
<正>Synergistic effects of layered double hydroxide(LDH) with intumescent flame retardanct(IFR) of phosphorus-nitrogen (NP) compound in the polypropylene/ethylene-propylene-diene/IFR/LDH(PP/EPDM/IFR/LDH) nanocomposites and related properties were studied by X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),limiting oxygen index(LOI),UL-94 test,cone calorimeter test(CCT) and thermo-gravimetric analysis (TGA).The XRD and TEM results show that the intercalated and/or exfoliated nanocomposites can be obtained by direct melt-intercalation of PP/EPDM into modified LDH and that LDH can promote the IFR additive NP to disperse more homogeneously in the polymer matrix.The SEM results provide positive evidence that more compact charred layers can be obtained from the PP/EPDM/NP/LDH sample than those from the PP/EPDM/LDH and PP/EPDM/NP samples during burning.The LOI and UL-94 rating tests show that the synergetic effects of LDH with NP can effectively increase the flame retardant properties of the PP/EPDM/NP/LDH samples.The data from the CCT and TGA tests indicate that the PP/EPDM/NP/LDH samples apparently decrease the HRR and MLR values and thus enhance the flame retardant properties and have better thermal stability than the PP/EPDM/LDH and PP/EPDM/NP samples.  相似文献   

7.
Direct analysis of polymers containing polymeric hindered amine light stabilizers (HALS) by using pyrolysis coupled to GC-MS is applied successfully for fast and straightforward identification of these HALS additives. Each of the HALS additives shows different pyrolysis gas chromatograms containing characteristic pyrolysis products. As a result, HALS additives with very similar chemical structures, e.g. Chimassorb 944 and Chimassorb 2020, can be distinguished. A HPLC method with both ultraviolet (UV) and evaporative light scattering detection (ELSD) is developed to quantify the various HALS additives in extracts of polymers. The critical factor of the HPLC method is the use of a basic amine, like n-hexylamine, as a solvent additive to facilitate the elution of HALS additives. The various HALS additives can be distinguished according to retention time and peak shape and by using different detection methods. The suitability of the developed methods is demonstrated by the analytical performance of the HPLC method and the identification and determination of the actual content of HALS additives in polyolefines using pyrolysis GC-MS and HPLC. The HPLC method can also be used for the determination of the specific migration of HALS additives from food contact materials.  相似文献   

8.
The thermal oxidative degradation kinetics of pure acrylonitrile–butadiene–styrene (ABS) and the flame-retarded ABS materials with intumescent flame retardant (IFR) were investigated using Kissinger, Flynn–Wall–Ozawa, and Horowitz–Metzger methods. The results showed that the degradation of all samples included two stages, the activation energy at the first stage decreased by the incorporation of these flame retardant components, while increased at the second stage. The activation energy order of the flame-retarded ABS samples at stage 2 illustrates the relationship between the composition of IFRs and their flame retardancy, FR materials with appropriate acid agent/char former ratio has higher activation energy and better flame retardancy.  相似文献   

9.
A solid acid, phospho-tungstic acid (PTA), has been used to catalyze the pentaerythritol-melamine phosphate (PER-MP) reaction to synthesize intumescent flame retardant, melamine salt of pentaerythritol phosphate (MPP) used in flame retardant polypropylene (PP). This novel and environmentally friendly synthesis technology well solves the problems of conventional preparation methods. PTA plays a double-role: on one hand, it remarkably enhances the conversion of the above reaction and decreases the reaction temperature; on the other hand, it acts as an effective synergist with MPP and greatly improves the flame retardancy; accordingly, no additional process is needed to remove PTA after the reaction, and the products of the catalyzed reaction were directly incorporated with PP to prepare high-performance flame retardant materials. The catalytic and synergistic effects of PTA, as well as the flame retardancy and mechanical properties of the corresponding flame retardant PP were investigated.  相似文献   

10.
本文研究了以聚磷酸铵(APP)为主阻燃剂,次磷酸铝(AHP)和三聚氰胺氰尿酸盐(MCA)为辅阻燃剂的协效阻燃体系对聚丙烯(PP)阻燃性能的影响。 采用垂直燃烧测试、极限氧指数(LOI)测试、热重分析、锥形量热仪测试、扫描电子显微镜分析等技术手段对所制备的阻燃样品进行了阻燃性能分析。 结果表明:单独添加任一质量分数30%阻燃剂,均不能使PP获得良好的阻燃性能;当阻燃剂总质量分数保持在30%,m(APP):m(AHP):m(MCA)=4:1:1时获得理想阻燃效果,此时阻燃PP的LOI为33%,垂直燃烧测试达到V-0级,热释放速率峰值(PHRR)从765.7 kW/m2降为122.7 kW/m2。  相似文献   

11.
用裂解气相色谱(PyGC)考察了经三种类型阻燃剂(含磷、含溴、含溴和磷)改性的聚丙烯的热稳定性。利用PyGC-MS法分析不同样品的高温裂角产物,以此来推测阻燃材料受热分解时气相以及凝聚相所发生的反应,推断阻燃机理,分析影响阻燃效果的因素,为阻燃剂的开发提供有益参考。结果证实,它们都影响聚丙烯的热降解。溴系阻燃剂和磷系阻燃剂是分别从气相阻断、凝固相加速成炭实现阻止燃烧的,而磷-溴型阻燃剂同时具备单纯含磷或者含溴阻燃能力。  相似文献   

12.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Flame retardant nanocomposites have attracted many research efforts because they combine the advantages of a conventional flame retardant polymer with that of polymer nanocomposite. However the properties obtained depend on the dispersion of the nanoparticles. In this study, three types of polymer flame retarded nanocomposites based on different matrices (polypropylene (PP), polybutadiene terephtalate (PBT) and polyamide 6 (PA6)) have been prepared by extrusion. In order to investigate the dispersion of nanoparticles in the polymer containing flame retardant, conventional methods used to characterise the morphology of composites have been applied to FR composites containing nanoclays. XRD, TEM and melt rheology give useful information to describe the dispersion of the nanofiller in the flame retarded nanocomposite. In the PA6-OP1311 (phosphorus based flame retardant) materials, the clay is well dispersed unlike in PBT and PP materials where microcomposites are obtained with some intercalation. The poor dispersion is also highlighted by NMR measurements but the presence of flame retardant particles interferes in the quantitative evaluation of nanoclay dispersion and underestimations are made.  相似文献   

14.
交联三嗪类聚合物的制备及其成炭性研究   总被引:1,自引:1,他引:0  
通过异氰尿酸三缩水甘油酯与三聚氰胺的本体熔融聚合反应,合成了一种交联结构的三嗪类聚合物成炭剂,它显示出良好的热稳定性和耐水性,其制备过程不需溶剂,简单易行,且无有害物质排放.这种新型交联聚合物与聚磷酸铵复配(质量比1:5)而组成的膨胀型阻燃剂,应用于聚丙烯阻燃.当膨胀阻燃剂用量为阻燃聚丙烯的32%时,燃烧测试分析表明,所获得的炭层展现出致密连续的结构,其阻燃氧指数达到32,垂直燃烧FV-0,热释放速率峰值为486kJ/m2,比纯PP降低了47.5%,而有焰燃烧时间为714s,比纯聚丙烯增加54.9%.  相似文献   

15.
Flammability of recycled polypropylene (PP)/low density polyethylene (LDPE)/high density polyethylene (HDPE) ternary blends containing date palm fibres is investigated in this study. Melt blending is used for the composite preparation and the palm fibres induce good mechanical strength to the blend composites. The effect of flame retardant magnesium hydroxide, is studied through the limiting oxygen index analysis and cone calorimeter studies. Morphology of the palm fibres in presence of fire retardant reveals interesting facts of base hydrolysis. Since the polymers used are recycled ones and the fibres are obtained from the date palm leaves, the whole composite manufactured stands as low cost, less energy consuming and environmental friendly. Though the flame retardant reduced the mechanical properties, the palm fibres strengthened the whole composite thus helping to achieve the flame retardancy and mechanical properties simultaneously. Flame retardancy is correlated with the thermal degradation and thermal conductivity of the blend fibre composites as well.  相似文献   

16.
An intumescent system consisting of ammonium polyphosphate (APP) as an acid source and blowing agent, pentaerythritol (PER) as a carbonific agent and natural zeolite (clinoptilolite, Gördes II) as a synergistic agent was used in this study to enhance flame retardancy of polypropylene (FR-PP). Zeolite was incorporated into flame retardant formulation at four different concentrations (1, 2, 5, and 10 wt%) to investigate synergism with the flame retardant materials. Filler content was fixed at 30 wt% of total amounts of flame retardant PP composites. Zeolite and APP were treated with two different coupling agents namely, 3-(trimethoxysilyl)-1-propanethiol and (3-aminopropyl)-triethoxysilane for investigation of the influence of surface treatments on mechanical properties and flame retardant performance of composites. Maleic anhydride grafted polypropylene (MAPP) was used for making polypropylene hydrophilic. Flammability of FR-PP composites was measured by the determination of limiting oxygen index (LOI). The LOI values reached to a maximum value of 41% for mercapto silane treated APP:PER (2:1) PP composite containing 5 wt% zeolite. The tensile strength of composites was increased by the addition of MAPP and elongation at break of composites was increased with silane treatments.  相似文献   

17.
Flame retardant mixtures of carbon nanotubes (CNTs) and intumescent flame retardant (IFR) were embedded in polypropylene (PP) to investigate what will happen if the additives exhibit two different flame retardation mechanisms. TEM tests showed that CNTs dispersed homogenously in PP matrix without any visible agglomeration. The effects of CNTs on thermal stability and flammability of PP were investigated by thermogravimetry (TG) and cone calorimetry tests, respectively. Results indicated that the introduction of CNTs only enhanced thermal stability of materials in a certain temperature range, but caused a severe deterioration of flame retardancy due to the interaction of the network structure and the intumescent carbonaceous char. Furthermore, conditions for an intumescent flame retardation system to behave with high efficiency were also discussed by a secondary combustion test.  相似文献   

18.
The apparent melt shear viscosity of polypropylene (PP) composites filled with aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) was measured by means of a melt flow rate instrument under experimental conditions of temperature ranging from 170 to 195 °C and load varying from 2.16 to 12.5 kg, to identify the effects of particle size and content. The results showed that the melt shear flow of the composites obeyed the power law under the experimental conditions, the dependence of the melt apparent shear viscosity (ηa) on temperature was consistent with the Arrhenius equation, and the sensitivity of the ηa for the composite melts to temperature increased with addition of flame retardant. The ηa of the composites decreased with increasing apparent shear rate. The ηa increased with an increase of the content of flame retardant, but this rate of increase decreased with a rise of temperature or load. When the particle size of flame retardant was smaller than 5 μm, the ηa of the composites increased with increase of particle size of flame retardant, and then reduced with a further increase of particle size of flame retardant.  相似文献   

19.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

20.
An intumescent flame retardant system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) was used for flame retarding ethylene–propylene–diene‐modified elastomer (EPDM)/polypropylene (PP) blends. Cerium phosphate (CeP) was synthesized and the effect on flame retardancy and thermal stability of EPDM/PP composites based on intumescent flame retardant (IFR) were studied by limiting oxygen index (LOI), UL‐94, and thermogravimetic analysis (TGA), respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) were used to analyze the morphological structure and the component of the residue chars formed from the EPDM/PP composites, and the mechanical properties of the materials were also studied. The addition of CeP to the EPDM/PP/APP/PER composites gives better flame retardancy than that of EPDM/PP/APP/PER composites. TGA and RT‐FTIR studies indicated that an interaction occurs among APP, PER, and EPDM/PP. The incorporation of CeP improved the mechanical properties of the materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号