首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
MXenes are recently developed two-dimensional layered materials composed of early transition metal carbides and/or nitrides that provide unique characteristics for biosensor applications. This review presents the recent progress made on the usage and applications of MXenes in the field of electrochemical biosensors, including microfluidic biosensors and wearable microfluidic biosensors, and highlights the challenges with possible solutions and future needs. The multilayered configuration and high conductivity make these materials as an immobilization matrix for the biomolecule immobilization with activity retention and to be explored in the fabrication of electrochemical sensors, respectively. First, how the MXene nanocomposite as an electrode modifier affects the sensing performance of the electrochemical biosensors based on enzymes, aptamer/DNA, and immunoassays is well described. Second, recent developments in MXene nanocomposites as wearable biosensing platforms for the biomolecule detection are highlighted. This review pointed out the future concerns and directions for the use of MXene nanocomposites to fabricate advanced electrochemical biosensors with high sensitivity and selectivity. Specifically, possibilities for developing microfluidic electrochemical sensors and wearable electrochemical microfluidic sensors with integrated biomolecule detection are emphasized.  相似文献   

2.
MXenes are a new group of 2D nanomaterials with fascinating properties including high electrical conductivity, hydrophilic nature, easily tunable structure and high surface area. This is why MXene modified interfaces are extremely promising for the preparation of sensitive electrochemical biosensors. While there are numerous reports on MXene‐based enzymatic biosensors for detection of a wide range of analytes, application of MXene for construction of affinity biosensors is in its infancy. The review article summarizes current state‐of the‐art in the field with a focus on MXene modifications needed for construction of robust and high performance MXene electrochemical biosensors.  相似文献   

3.
电化学发光传感器研究进展   总被引:5,自引:0,他引:5  
本文简要介绍了电化学发光传感器近几年取得的重要研究成果。内容主要包括联吡啶钌电化学发光传感器、鲁米诺电化学发光生物传感器及电化学发光的微型化发展。引用参考文献42篇。  相似文献   

4.
Electrochemical biosensors have attracted much attention in mycotoxin bioanalysis. In this review, three electrochemical biosensor technologies for mycotoxins were reviewed, including general electrochemistry, photoelectrochemistry, and electrochemiluminescence. Based on the classification of multiple electrochemical detection methods, the design schemes, recognition mechanism and probe materials were described in detail. Moreover, the characteristics and limitations of these electrochemical biosensors were summarized. The challenges and future trends of electrochemical biosensor development in mycotoxin bioanalysis were also briefly discussed in the end. This review is expected to provide some inspirations for point-of-care testing in electrochemical sensors for mycotoxins and further electrochemical analysis application.  相似文献   

5.
Graphene, a honeycomb lattice of carbon material with single-atom-layer structure, demonstrates extraordinary mechanical, thermal, chemical and electronic properties. Thus, it has sparked tremendous interests in various fields, such as energy storage and conversion devices, field-effect transistors (FET), chemical sensors and biosensors. In this review, we will first focus on the synthesis method of graphene and the fabrication strategy of graphene-based materials. Subsequently, the construction of graphene-based biosensors are introduced, in which three kinds of biosensors are discussed in details, including the FET, electrochemical biosensors and electrochemiluminescence (ECL) biosensors. The performances of the state-of-the-art biosensors on the detection of biomolecules are also displayed. Finally, we also highlight some critical challenges remain to be solved and the development in this field for further research.  相似文献   

6.
分子印迹-电化学发光技术具有分子印迹技术的高选择性及电化学发光技术的高灵敏性,以及发光易于调控、稳定性好、便于微型化和仪器操作简单等优点,已被广泛地应用于重金属检测、免疫传感技术、基因传感技术、酶传感技术、食品安全与药物分析等领域。该文结合本实验室的研究工作介绍了分子印迹电化学发光传感器的原理和构建思路。在此基础上,着重介绍了分子印迹电化学发光技术在食品安全与药物分析中的应用,并对其今后的研究趋势进行了展望。  相似文献   

7.
This review (with 79 references) summarizes the recent work on the development of chemical sensors and biosensors based on the use of composites made from conducting polymers (CPs) and graphene. Owing to the unique electrical, mechanical, optical, chemical and structural properties of CP and graphene, these kinds of composites have generated increasing interest in senor field. In this review, we first discuss methods for preparation of CP/GE composites by chemical, electrochemical, or physical methods including electrostatic interactions. We then cover aspects of the fabrication of modified electrodes and the performance of respective sensors with electrochemical, electronic or optical signal transduction. We then discuss sensors for the determination of inorganic and organic species, gases and vapors. We also review the state of the art in respective biosensors for hydrogen peroxide and glucose, for oligomers (DNA, RNA, and aptamers), for biogenic amines, NAD^+/NADH, cytochromes and the like, and in immunosensors. Finally, the perspective and current challenges of CP/GE composites for use in (bio)sensors are outlooked.
Figure
Conducting polymer composites with graphene have attracted increasing research interest in the modified electrodes for the application in chemical sensors and biosensors, due to the unique intrinsic properties of each component.  相似文献   

8.
Detection of small metabolite biomarkers at different concentrations could be powerfully used for disease diagnosis and progression. To enhance detection capabilities, nanomaterials possessing excellent optical and electrochemical properties have been integrated into a wide range of sensing or detection platforms. This review will highlight recent developments in creating electrochemical sensors alongside biosensors using carbon nanomaterials and metallic nanoparticles that target small metabolites. Moreover, electrochemical sensors having different detection strategies toward metabolites (such as amino acids, amino acid–derived neurotransmitters, vitamins, adenosine triphosphate, and purine derivatives) will be discussed. Finally, certain challenging issues and future aspects of nanomaterials-integrated electrochemical sensors for small metabolites will be discussed.  相似文献   

9.
The objective of this study is to analyze the technical importance, performance, techniques, advantages, and disadvantages of the biosensors in general and of the electrochemical biosensors in particular. A product of reaction diffuses to the transducer in the first generation biosensors (based on Clark biosensors). The mediated biosensors or second generation biosensors use specific mediators between the reaction and the transducer to improve sensitivity. The second generation biosensors involve two steps: first, there is a redox reaction between enzyme and substrate that is reoxidized by the mediator, and eventually the mediator is oxidized by the electrode. No normal product or mediator diffusion is directly involved in the third generation biosensors, direct biosensors. Based on the type of transducer, current biosensors are divided into optical, mass, thermal, and electrochemical sensors. They are used in medical diagnostics, food quality controls, environmental monitoring, and other applications. These biosensors are also grouped under two broad categories of sensors: direct and indirect detection systems. Moreover, these systems could be further grouped into continuous or batch operation. Therefore, amperometric biosensors and their current applications are focused on more in detail since they are the most commonly used biosensors in monitoring and diagnosing tests in clinical analysis. Problems related to the commercialization of medical, environmental, and industrial biosensors as well as their performance characteristics, their competitiveness in comparison to the conventional analytical tools, and their costs determine the future development of these biosensors.  相似文献   

10.
柳玢竹  张国军  李玉桃 《化学通报》2021,84(12):1292-1299
酸碱度异常即pH值改变与机体的健康状况有密不可分的关系,活体实时pH检测不仅可以为临床诊疗提供支持信息,而且有助于一些疾病发病机理的研究。本综述详细介绍了pH的定义、pH检测的发展历史、活体实时pH生物传感器所需满足的条件,重点介绍了各类型活体实时pH生物传感器的原理与应用,包括电化学传感器、荧光传感器、光纤传感器以及超声传感器,并对活体实时pH生物传感器的未来发展方向做出展望。  相似文献   

11.
This review covers recent advances in the development of new designs of electrochemical sensors and biosensors that make use of electrode surfaces modification with carbon nanotubes. Applications based on carbon nanotubes-driven electrocatalytic effects, and the construction and analytical usefulness of new hybrid materials with polymers or other nanomaterials will be treated. Moreover, electrochemical detection using carbon nanotubes-modified electrodes as detecting systems in separation techniques such as high performance liquid chromatography (HPLC) or capillary electrophoresis (CE) will be also considered. Finally, the preparation of electrochemical biosensors, including enzyme electrodes, immunosensors and DNA biosensors, in which carbon nanotubes play a significant role in their sensing performance will be separately considered.  相似文献   

12.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   

13.
Enzymes, primarily different types of oxidases and most commonly peroxidase, are often used in the construction of biosensors. Enzymatic biosensors, due to their small size, easy to handle construction, accuracy and specificity, are powerful healthcare tools commonly used for the diagnosis of diseases for more than 20 years. Unfortunately, the loss of enzymatic activity during the immobilization of enzymes into biosensors has been a recent major problem. Hence, nonenzymatic electrochemical sensors based on organic and inorganic nanostructures have gained great attention in the last few years. In this short review, different types of nanostructures and nanocomposites and their practical applications in the construction of nonenzymatic electrochemical sensors in healthcare and diagnosis are described and summarized.  相似文献   

14.
《Analytical letters》2012,45(8):783-803
Recent trends and challenges in developing carbon nanotubes (CNT) based sensors and biosensors for the detection of organophosphate (OP) pesticides and other organic pollutants in water are reviewed. CNT have superior electrical, mechanical, chemical, and structural properties over conventional materials such as graphite. At the same time CNT based sensors and biosensors are more efficient compared to the existing traditional techniques such as high-performance liquid chromatography or gas chromatography, because they can provide rapid, sensitive, simple, and low-cost on-field detection. The measurement protocols can be based on enzymatic and non-enzymatic detection. The enzyme acetylcholinesterase (AChE) is used with CNT for fabricating ultrasensitive biosensors for OP detection involving different immobilization schemes such as adsorption, crosslinking, and layer-by-layer self-assembly. This protocol relies on measuring the degree of enzyme inhibition as means of OP quantification. The other enzyme used along with CNT for OP detection is organophosphate hydrolase (OPH) which hydrolyzes the OP into detectable species that can be measured by amperometric or potentiometric methods. Different forms of CNT electrode materials can be used for fabricating such electrodes such as pure CNT and composite CNT. Due to their large surface area and hydrophobicity, CNT have also been used for the extraction and non-enzymatic electrochemical detection of OP with very high efficiency. The application of CNT and their novel properties for the adsorption and electrochemical detection of OP compounds is discussed in detail.  相似文献   

15.
《Electroanalysis》2017,29(9):2106-2113
In this article, electrochemical properties of CuO nanostructures based dopamine (DA) sensor was investigated. The morphology, structure, optical, and compositional properties of the CuO nanostructures were characterized by using SEM, XRD, UV‐Vis, and XPS techniques. The electrochemical properties were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results indicate that biosensors based on CuO nanostructures exhibit a high selectivity and sensitivity of 0.1975 μA μM–1 toward DA and effectively avoids the interference of ascorbic acid (AA) and uric acid (UA). The obtained EIS spectra for CuO sensors were analysed using an electrical equivalent circuit to understand the bulk and surface response via the capacitive and resistive parameters. The EIS measurement also leads to the direct determination of parameters like series resistance and ion diffusion phenomena at electrode‐electrolyte interface. The experimental CV and EIS results along with their analysis will have a significant impact on understanding the mechanism of high sensitivity and selectivity performance of CuO based sensors. This study may also lay the basis for efficient characterization of biosensors by coupling both the CV and EIS characterization techniques.  相似文献   

16.
The principles of biocatalytic and bioaffinity biosensors are reviewed with emphasis on electron transfer-type enzyme sensors, optical enzyme sensors and optical immunosensors for homogeneous immunoassay. An enzyme sensor for ethanol was fabricated by electrochemical polymerization of pyrrole onto the surface of platinized platinum-adsorbed alcohol dehydrogenase—NAD—Meldola Blue. Ethanol was determined amperometrically by measuring the oxidative current through polypyrrole. An optical enzyme sensor is exemplified by an acethylcholine sensor based on an optical pH fibre sensor using a thin polyaniline film. The optical immunosensor for homogeneous immunoassay consists of an optical fibre, the end of the which is coated with an optically transparent platinum electrode. With using luminol as a label, highly sensitive homogeneous immunoassay is carried out by measuring the electrochemical luminescence of the label.  相似文献   

17.
Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy.  相似文献   

18.
The synthesis by electropolymerization, the characterization, and applications of poly(neutral red) (PNR), including as a redox mediator, are reviewed. PNR's high electrical conductivity and its redox characteristics have led to special applications of the polymer, and it has been used for the development of electrochemical and optical sensors. Moreover, the attractive properties of PNR allow it to be applied in the development of electrochemical biosensors. Future perspectives are indicated.  相似文献   

19.
The aim of this review is to summarize the most relevant contributions in the development of electrochemical (bio)sensors based on carbon nanotubes in the last years.Since the first application of carbon nanotubes in the preparation of an electrochemical sensor, an increasing number of publications involving carbon nanotubes-based sensors have been reported, demonstrating that the particular structure of carbon nanotubes and their unique properties make them a very attractive material for the design of electrochemical biosensors.The advantages of carbon nanotubes to promote different electron transfer reactions, in special those related to biomolecules; the different strategies for constructing carbon nanotubes-based electrochemical sensors, their analytical performance and future prospects are discussed in this article.  相似文献   

20.
《Electroanalysis》2006,18(4):319-326
The unique chemical and physical properties of nanoparticles make them extremely suitable for designing new and improved sensing devices, especially electrochemical sensors and biosensors. Many kinds of nanoparticles, such as metal, oxide and semiconductor nanoparticles have been used for constructing electrochemical sensors and biosensors, and these nanoparticles play different roles in different sensing systems. The important functions provided by nanoparticles include the immobilization of biomolecules, the catalysis of electrochemical reactions, the enhancement of electron transfer between electrode surfaces and proteins, labeling of biomolecules and even acting as reactant. This minireview addresses recent advances in nanoparticle‐based electrochemical sensors and biosensors, and summarizes the main functions of nanoparticles in these sensor systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号