首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A decade of capillary electrophoresis   总被引:2,自引:0,他引:2  
Issaq HJ 《Electrophoresis》2000,21(10):1921-1939
Since the introduction of the first commercial capillary electrophoresis (CE) instrument a decade ago, CE applications have become widespread. Today, CE is a versatile analytical technique which is successfully used for the separation of small ions, neutral molecules, and large biomolecules and for the study of physicochemical parameters. It is being utilized in widely different fields, such as analytical chemistry, forensic chemistry, clinical chemistry, organic chemistry, natural products, pharmaceutical industry, chiral separations, molecular biology, and others. It is not only used as a separation technique but to answer physicochemical questions. In this review, we will discuss different modes of CE such as capillary zone electrophoresis, micellar electrokinetic chromatography, capillary gel electrophoresis, capillary isoelectric focusing, and capillary electrochromatography, and will comment on the future direction of CE, including array capillary electrophoresis and array microchip separations.  相似文献   

2.
《Electrophoresis》2018,39(16):2091-2098
CE is central to the analysis, process development and approval of therapeutic monoclonal antibodies (mAbs). Recently, imaged capillary isoelectric focusing (icIEF) has emerged as a powerful technique for quantitative protein charge heterogeneity monitoring and characterization, particularly for mAbs. However, icIEF has yet to be validated for therapeutically relevant mAbs adhering to the ICH guideline (International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use). Here, for the first time, icIEF technology was validated by 10 laboratories across 8 independent companies using a therapeutic mAb. The parameters of this method validation strictly follow the guideline of the ICH. This guideline includes specificity, precision, accuracy, linearity, range, LOQ and robustness. These results represent a significant step forward in standardizing the use of icIEF methods for the clinical approval of therapeutic mAbs.  相似文献   

3.
A collaborative study on the robustness and portability of a capillary electrophoresis‐mass spectrometry method for peptide mapping was performed by an international team, consisting of 13 independent laboratories from academia and industry. All participants used the same batch of samples, reagents and coated capillaries to run their assays, whereas they utilized the capillary electrophoresis‐mass spectrometry equipment available in their laboratories. The equipment used varied in model, type and instrument manufacturer. Furthermore, different types of sheath‐flow capillary electrophoresis–mass spectrometry interfaces were used. Migration time, peak height and peak area of ten representative target peptides of trypsin‐digested bovine serum albumin were determined by every laboratory on two consecutive days. The data were critically evaluated to identify outliers and final values for means, repeatability (precision within a laboratory) and reproducibility (precision between laboratories) were established. For relative migration time the repeatability was between 0.05 and 0.18% RSD and the reproducibility between 0.14 and 1.3% RSD. For relative peak area repeatability and reproducibility values obtained were 3–12 and 9–29% RSD, respectively. These results demonstrate that capillary electrophoresis‐mass spectrometry is robust enough to allow a method transfer across multiple laboratories and should promote a more widespread use of peptide mapping and other capillary electrophoresis‐mass spectrometry applications in biopharmaceutical analysis and related fields.  相似文献   

4.
The complexity of biotherapeutic products implies an ever-increasing list of product quality attributes that need to be monitored and characterized. In addition, the growing interest in implementing process analytical technology in biopharmaceutical production has further increased the testing burden, together with the need for rapid testing that can facilitate real-time or near-real-time decision-making. Capillary electrophoresis (CE) has made a place in biopharmaceutical analysis but is regarded as a low-throughput method, with the instrument dead time constituting more than 80% of the total time of analysis. In this study, the dead time of CE was utilized to analyse 3 mAb samples in a single-CE run. This approach resulted in an up to 77% reduction in the total analysis time and increased the productivity by up to 300%, compared to traditional single CE-ultraviolet runs, without compromising resolution or relative peak areas. Additionally, good method reproducibility was observed. The compatibility of the method has been demonstrated with protein A eluate and cation exchange chromatography fractions. We, thus, propose that sequential injections can be applied for fast and robust CE analysis of biopharmaceuticals.  相似文献   

5.
Analytical laboratories are more and more faced to meet official regulatory requirements as described in FDA and EPA good laboratory practice, good automated laboratory practice and good manufacturing practice regulations or to officially establish quality systems, such as specified in the ISO 9000 Series quality standards, in the ISO Guide 25 or in the EN 45001 guidelines. The impact on analytical instrumentation will be the requirement for stringent validation of analytical equipment and methods which increase the overall analysis costs. An overview is presented on the validation requirements using e.g. gas chromatography, high performance liquid chromatography, capillary electrophoresis and UV-visible spectroscopy and on the strategy to meet such needs at minimal extra costs with the help of an instrument vendor. It is recommended to use instrument hardware that has already built-in tools for self-verification and which is to be validated at the vendor's site. Performance testing in the user's laboratory is done using standard operating procedures as supplied with the instrument. If resources in the user's laboratory are limited, the performance verification is done by the vendor. Software and the entire computer system is validated prior to shipment at the vendor's site. Acceptance testing is done in the user's environment following the vendor recommendations. Analytical methods are validated automatically at the end of method development using a dedicated software. The software can be customized such that it can also be used for daily automated system suitability testing. Security and integrity of analytical data are ensured by saving the raw data together with instrument conditions and instrument log-books in check-sum protected binary register files for long-term archiving.  相似文献   

6.
《Electrophoresis》2017,38(9-10):1353-1365
Capillary and microfluidic chip electrophoresis technologies are heavily utilized for development, characterization, release, and stability testing of biopharmaceuticals. Within the biopharmaceutical industry, CE‐SDS and M‐CGE are commonly used for purity determination by separation and quantitation of size‐based variants. M‐CGE is used primarily as an R&D tool for product and process development, while cGMP release and stability testing applications are commonly reserved for CE‐SDS. This paper describes the establishment of an M‐CGE platform method to be used for R&D and cGMP applications, including release and stability testing, for monoclonal antibodies. The M‐CGE platform method enables testing for product development support and cGMP release and stability using the same method, and utilization of one CE technology for the entire lifecycle of a biopharmaceutical product. Critical method parameters were identified, and the analytical design space of those critical parameters was defined using design of experiments (DOE) studies. Once defined through DOE studies, the method design space was validated according to ICH Q2 (R1) guidelines. Additional molecules of the same validated class were verified for use in the method by experimental confirmation of accuracy, specificity, and stability indicating capabilities. The platform method model facilitates rapid utilization of the method in development and GMP testing environments, and eliminates the need for individual validations for assets of the same class entering early stage development.  相似文献   

7.
Capillary Electrophoresis-Sodium Dodecyl Sulfate (CE-SDS) method with UV detection was developed and satisfactorily used for determination of purity and manufacturing consistency of a monoclonal antibody (MAb) at Amgen Inc. (Seattle, WA). When this method was applied to some other MAbs, several problems with method robustness became apparent. These issues resulted in abnormal Electropherogram (e-gram) profiles potentially linked to various parameters specific molecules analyzed, sample formulation buffer composition, CE-SDS gel matrix type, and operators. A multi-users interest group (called CE Users Forum) was formed to systematically investigate and understand these issues. The CE Users Forum first identified the issues which needed resolution, defined group experiments to better understand the problem and to test potential solutions, and together defined a generic (platform) CE-SDS method for MAbs. Two CE instruments, Agilent HP3DCE and Beckman PA 800, two CE-SDS gel matrices, BioRad and Beckman gels, as well as different types of MAbs in various buffers were used in this investigation. We present here a platform CE-SDS method for purity determination of MAbs. Method optimization and trouble-shooting procedures by the CE Users Forum played a key role in delivering a robust analytical method for characterization of antibodies by improving instrumental and experimental parameters such as instrument variability, instrument operating parameters, operator training, and reagent stability. The optimized CE-SDS method is used during process development and has been transferred to the quality control (QC) lab as a purity assay for lot release testing of therapeutic antibodies. Any trained analyst can successfully perform this method. A group such as the CE Users Forum is a good way to integrate best practices and solve technical issues in a cooperative environment.Presented at: CE in the Biotechnology & Pharmaceutical Industries: 7th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides and Small Molecules, Montreal, Canada, August 12–16, 2005  相似文献   

8.
Capillary sieving electrophoresis utilizing SDS (CE(SDS)) is one of the most applied methods for the analysis of antibody (mAb) size heterogeneity in the biopharmaceutical industry. Inadequate peak identification of observed protein fragments is still a major issue. In a recent publication, we introduced an electrophoretic 2D system, enabling online mass spectrometric detection of generic CE(SDS) separated peaks and identification of several mAb fragments. However, an improvement regarding system stability and handling of the approach was desired. Here, we introduce a novel 8-port valve in conjunction with an optimized decomplexation strategy. The valve contains four sample loops with increased distances between the separation dimensions. Thus, successively coinjection of solvent and cationic surfactant without any additional detector in the second dimension is enabled, simplifying the decomplexation strategy. Removal efficiency was optimized by testing different volumes of solvents as presample and cationic surfactant as postsample zone. 2D measurements of the light and heavy chain of the reduced NIST mAb with the 8-port valve and the optimized decomplexation strategy demonstrates the increased robustness of the system. The presented novel set-up is a step toward routine application of CE(SDS)-CZE-MS for impurity characterization of proteins in the biopharmaceutical field.  相似文献   

9.
In recent years, chemiluminescence (CL)-based detection coupled to capillary electrophoresis (CE) as separation technique has attracted much interest due to new advances in home-made configurations, sample-treatment techniques for application to real matrixes, development of a commercial instrument and use of miniaturization techniques to obtain micro total analysis systems incorporating CE separation and CL detection in microchips. We present some developments, key strategies and selected analytical applications of CE-CL since the year 2000 in diverse fields (e.g., clinical and pharmaceutical, environmental or food analysis).  相似文献   

10.
Vaccines against infectious diseases are urgently needed. Therefore, modern analytical method development should be as efficient as possible to speed up vaccine development. The objectives of the study were to identify critical method parameters (CMPs) and to establish a set of steps to efficiently develop and validate a CE-SDS method for vaccine protein analysis based on a commercially available gel buffer. The CMPs were obtained from reviewing the literature and testing the effects of gel buffer dilution. A four-step approach, including two multivariate DoE (design of experiments) steps, was proposed, based on CMPs and was verified by CE-SDS method development for: (i) the determination of influenza group 1 mini-hemagglutinin glycoprotein; and (ii) the determination of polio virus particle proteins from an inactivated polio vaccine (IPV). The CMPs for sample preparation were incubation temperature(s) and time(s), pH, and reagent(s) concentration(s), and the detection wavelength. The effects of gel buffer dilution revealed the CMPs for CE-SDS separation to be the effective length, the gel buffer concentration, and the capillary temperature. The four-step approach based on the CMPs was efficient for the development of the two CE methods. A four-step approach to efficiently develop capillary gel electrophoresis methods for viral vaccine protein analysis was successfully established.  相似文献   

11.
CE SDS gel technique offers many advantages over the traditional labor-intensive SDS PAGE slab gel technology. The CE-based method has increasingly been applied to many protein analysis applications. Specific examples are provided for monoclonal antibody (mAb), though the technique can be adapted to many other therapeutic protein products. Applications of CE SDS gel method using Beckman PA800 with UV detection are presented and discussed with respect to mAb analysis, such as purity, quantitation of non-glycosylated heavy chain (NGHC) peak, identity, and stability. The stability of mAb is evaluated with respect to formulation buffer, accelerated temperature stress, UV light-exposure, and high pH conditions. Both reducing and non-reducing CE SDS gel conditions were applied and optimized to characterize mAb products. The data presented provides a "taste" of what CE SDS gel method can do to support the development of mAb products from early clone screening for product quality to the final product characterization. Since the CE SDS gel method is automatable, quantitative, robust, and allows for relatively high throughput, it provides both great analytical capacity and product coverage for a wide spectrum of protein product development in biopharmaceutical industry.  相似文献   

12.
The ability of a developed capillary electrophoresis (CE) method for fast, efficient and reliable main component assay of ragaglitazar [NNC 61-0029/DRF(-)2725] has been demonstrated through documentation of the analytical performance and the results of a successful validation. The fast analysis time of around 1.2 min ensures a high analytical capacity, and the validation results show that the CE method is robust and gives reliable and precise results. The results from the validation of the CE method meet the acceptance criteria that are normally set for other main component assays such as high-performance liquid chromatography assays.  相似文献   

13.
Jenkins MA 《Electrophoresis》2004,25(10-11):1555-1560
Using capillary electrophoresis (CE) for serum protein electrophoresis, the quality of results begins with monitoring a well-functioning instrument, using scrupulously clean capillaries, well-calibrated methods as well as regular use of an internal quality control material. Quality assurance programs are available in countries such as Australia, United Kingdom, United States, and European countries such as Sweden and Germany. The present commercial control material that is available gives percentages of albumin, alpha 1, alpha 2, beta- and gamma-globulins, the gamma-component being of normal distribution, and not containing any monoclonal protein component. We feel that a quantitative commercial control material containing a monoclonal protein at decision level for treating myeloma patients would be beneficial to all laboratories as a serum protein electrophoresis control, whether the analysis is by CE or agarose gels. The same applies for control material for urinary protein electrophoresis.  相似文献   

14.
Capillary electrophoresis with sodium dodecyl sulfate (CE-SDS) is a common analytical technique for investigating the purity and molecular size heterogeneity of monoclonal antibody (mAb) drugs. In reducing CE-SDS analysis of mAb-A, the light chain (LC) peak exhibited severe tailing, seriously affecting the purity analysis. The purposes of this investigation are to clarify the source of tailing and develop a more appropriate CE-SDS method to eliminate LC tailing. The degree of LC tailing was closely related to the mAb concentration, SDS concentration, and injection amount, and more hydrophobic detergents, such as sodium hexadecyl sulfate (SHS) and sodium tetradecyl sulfate (STS), could be used instead of SDS to obtain better peak shapes. The results also indicated that the tailing was caused by the binding problem associated with SDS, and SHS/STS could provide a more stable and uniform complexation for the LC. In summary, the method we developed successfully eliminated the LC tailing and provided a robust characterization of mAb-A in reducing CE-SDS analysis.  相似文献   

15.
Capillary electrophoresis (CE) is a relatively new analytical separation technique that is not usually introduced in the undergraduate analytical chemistry curriculum. The techniques growing popularity in research, industrial, and commercial laboratories, however, should be a reason to consider its introduction at this level. Here, we describe an exercise utilizing capillary zone electrophoresis and micellar electrokinetic chromatography. This exercise provides a suitable introduction to capillary electrophoresis and illustrates the mechanism for the separation of ionized and nonionized water-soluble vitamins (B1, B2 phosphate, B3 niacinamide, and B12). Joule heating can also be easily introduced as part of the exercise.  相似文献   

16.
Capillary gel electrophoresis (CGE) methods with UV detection were developed for reduced and non‐reduced mAb analysis. These methods can be used to evaluate mAb purity, offering more reproducible quantitation compared with that of traditional SDS‐PAGE methods. These CGE methods have been utilized as platform technology for bioprocess development, formulation development, mAb characterization, drug substance/drug product release testing as well as a required methodology for stability testing. We have found these CGE methods to be applicable across a platform of mAbs in preclinical and clinical development, with the majority of mAbs requiring no modification to the method conditions. This methodology has been ICH validated and transferred to several supporting organizations. The data presented herein describes the development of CGE methodology, platform application to mAb purity analysis, ICH validation, reliability metrics, and considerations on technology enhancement for improved performance and throughput.  相似文献   

17.
Capillary zone electrophoresis (CZE) has been elaborated for separation, identification and determination of ciprofloxacin and its impurities. The separation, phosphate buffer pH 6.0 was supplemented with 0.075 M pentane-1-sulfonic acid sodium salt. The elaborated method was validated. The selectivity, linearity, limits of detection (LOD) and quantification (LOQ), precision, and accuracy of capillary zone electrophoresis were evaluated. The results obtained by CZE were also compared with those obtained by liquid chromatography. Regarding the validation results the CE method fulfils the current European Pharmacopoeia (Eur. Ph.) requirements. The evaluated CE method could be applicable to the analysis of different medicinal products containing ciprofloxacin.  相似文献   

18.
Capillary electrophoresis (CE) is increasingly being used in regulated and testing environments which demand validation. The design, development and production of CE instrumentation should be governed by qualifications which ensure the quality of the finished product. The vendor should therefore provide guidelines and procedures which assist the user in ensuring the adequate operation of the instrumentation and especially in designing installation qualification (IQ) and operational qualification/performance verification (OQ/PV) procedures. OQ/PV should test those functions of an instrument which directly affect the CE analysis, i.e. voltage, temperature, injection precision and detector function. In validation of CE methods care should be taken that those aspects which directly affect the precision of peak parameters are appreciated. The relationship between CE instrumentation, chemistry and validation parameters is discussed and guidelines are presented for definition of a CE method for submission to regulatory authorities.  相似文献   

19.
el-Hady DA  el-Maali NA 《Talanta》2008,76(1):138-145
A simple and reliable analytical electrophoretic method using chiral capillary electrophoresis (CCE) with a high-sensitivity cell of special design has been established for simultaneous determination of (+)-catechin (C) and (-)-epicatechin (EC) in aqueous and human plasma media. The application of a capillary with high-sensitivity cell has led to an improvement of 10-fold and 5-fold time-corrected peak area over a standard cell and a capillary with bubble cell, respectively. Analysis has involved the electrophoretic separation of C and EC in less than 4.0 min at 210 nm. The running buffer consist of 50.0 mmol L(-1) borate buffer with 1.0 mmol L(-1) beta-cyclodextrin at pH 8.5. CCE system has been proved for its intended use by applying procedure starting from calibration of CE instrument into validation of all experimental parameters. The resolution between catechin isomers under optimal conditions has been found to be more than 3.0. The detection limits of C and EC have been calculated to be 3.2 and 1.0 ng mL(-1), respectively. Good linearity has been obtained with correlation coefficient (r(2)) ranging between 0.995 and 0.996 at 99% confidence level (CL). Application of the proposed method to human plasma after ingestion of green tea has successfully been achieved and has statistically been proved. The unchanged amounts of C and EC in plasma were about 17.4 and 1.8% of the administered dose after 2 h of starting tea ingestion. The detection limits of C and EC in human plasma at 210 nm were 4.1 and 1.5 ng mL(-1), respectively.  相似文献   

20.
Analytical platforms that characterize charge heterogeneity in therapeutic proteins, such as mAbs, are important tools that can be used to define quality attributes. CZE separates protein moieties close to their native state and is a valuable physicochemical analytical method that can be used in parallel with other orthogonal methods for characterization and comparability. In this study, custom conditions for the analysis of charge heterogeneity of two mAbs were developed with regard to critical parameters in the BGE, running conditions, and sample treatment. The method application was tested for up to four mAbs and one mAb fragment. The electropherograms showed specific profiles and contrasting levels of basic and acidic isoforms with respect to the main isoform. Issues that surround this method, such as peak tailing and capillary lifetime, are summarized. Using this method, the identities of rituximab and trastuzumab were confirmed, based on the correspondence between the biosimilars and reference products, noninterference of the sample matrix, and the ability to separate spiked samples of related mAbs. The RSD of the isoform content and migration time for the method repeatability were less than 2 and 1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号