首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
将N-异丙基丙烯酰胺(NIPAAm)引入小分子烃为模板的苯乙烯细乳液聚合法制备纳米胶囊的体系.水相引发形成的聚异丙基丙烯酰胺(PNIPAAm)低聚物自由基在聚合温度下(大于其最低临界溶解温度)析出并被苯乙烯细乳液液滴吸附,在热力学推动力和静电斥力的共同作用下,PNIPAAm低聚物倾向于分布在液滴和水的界面上,使液滴界面成为主要的聚合场所,单体从液滴内部向界面扩散补充消耗的单体,生成的聚合物在液滴界面上析出,包覆小分子烃液滴,最终得到纳米胶囊.通过透射电镜观察粒子形态和大小;利用接触角测定仪测定了细乳液液滴的表面张力.考察了NIPAAm用量、油溶性单体/小分子烃比例、交联剂用量及乳化剂和引发剂对的种类对胶囊形态的影响.  相似文献   

2.
The functionalization of well‐defined PU nanocapsules with an aqueous core prepared by performing a polyaddition at the interface of inverse (water‐in‐oil) miniemulsion droplets is demonstrated. The miniemulsion technique involving the nanoreactor concept allows one to obtain an encapsulation efficiency as high as 90% within the nanocapsules. A pH independent fluorescent dye is used as a model system for the aqueous core. By varying the molar ratio of the diol to the diisocyanate at a fixed surfactant concentration, the shell thickness of the nanocapsules can be finely tuned. The carboxy‐ and amino‐functionalized surface of the nanocapsules can be tailored by an in‐situ carboxymethylation reaction and by physical adsorption of a cationic polyelectrolyte, i.e. PAEMA or PEI. The increased uptake of amino‐functionalized fluorescent nanocapsules by HeLa cells clearly demonstrates the potential of the functionalized nanocapsules to be successfully exploited as biocarriers.

  相似文献   


3.
There is a growing interest in the development of stable nanocapsules that could deliver the bioactive compounds within the living organism, and to release them without causing any toxic effects. Here the miniemulsion droplets were first used as "nanoreactors" for the amplification of single-molecule dsDNA template (476 and 790 base pairs) through PCR. Afterwards, each droplet was surrounded with a biodegradable PBCA shell by interfacial anionic polymerization, enabling therefore to deliver the PCR products into the cells. The size of the initial miniemulsion droplets and the final polymeric capsules was in the range of 250 and 320 nm, mainly depending on the type of the continuous phase and presence of dsDNA template molecules. The formation of PCR products was resolved with gel electrophoresis and detected with fluorescence spectroscopy in the presence of DNA specific dye (SYBRGreen). TEM studies were performed to prove the formation of the polymeric shell. The shell thickness was measured to be within 5-15 nm and the average molecular weight of the formed PBCA polymer was around 75000 g · mol(-1) . For the cell uptake experiments, the obtained nanocapsules were transferred from the organic phase into aqueous medium containing a water-soluble surfactant. The effect of the surfactant type (anionic, cationic or non-ionic) on the HeLa cell viability and nanocapsule uptake behavior was studied by CLSM and FACS. Confocal analysis demonstrated that nanocapsules stabilized with cationic (CTMA-Cl) and non-ionic (Lutensol AT50) surfactants show almost the same uptake, whereas capsules redispersed in anionic (SDS) surfactant possess a 30% higher uptake. The release of the encapsulated material within the cell was studied on the example of Cy5-labeled oligonucleotides showing the colocalization with mitochondria of MSCs cells.  相似文献   

4.
Nanocapsules with an oily core and an organic/inorganic hybrid shell were elaborated by miniemulsion (co)polymerization of styrene, divinylbenzene, γ‐methacryloyloxy propyl trimethoxysilane, and N‐isopropyl acrylamide. The hybrid copolymer shell membrane was formed by polymerization‐induced phase separation at the interface of the oily nanodroplets with water. It was shown that the size, size distribution, and colloidal stability of the miniemulsion droplets were extremely dependent on the nature of the oil phase, the monomer content and the surfactant concentration. The less water‐soluble the hydrocarbon template and the higher the monomer content, the better the droplet stability. The successful formation of nanocapsules with the targeted core‐shell morphology (i.e., a liquid core surrounded by a solid shell) was evidenced by cryogenic transmission electron microscopy. Both nanocapsules and nanoparticles were produced by polymerization of the miniemulsion droplets. The proportion of nanoparticles increased with increasing monomer concentration in the oil phase. These undesirable nanoparticles were presumably formed by homogeneous nucleation as we showed that micellar nucleation could be neglected under our experimental conditions even for high surfactant concentrations. The introduction of γ‐methacryloyloxy propyl trimethoxysilane was considered to be the main reason for homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 593–603, 2010  相似文献   

5.
In this work, poly((N,N-dimethyl amino)ethyl methacrylate) (PDMAEMA) homopolymers are synthesized using RAFT technique, which is then used as stabilizers to prepare miniemulsion droplets in a toluene/hexadecane(HD)/1,2-Bis-(2-iodoethyl)ethane(BIEE)/hydrophobic molecule/water mixture. Upon the reaction between BIEE and the stabilizers of miniemulsion droplets, the polymeric nanocapsules are formed and capable of encapsulating hydrophobic molecule in their oil core in one-step reaction. The release of hydrophobic cargo from the nanocapsules can be controlled by the variation of amount of surfactant (Tween®20) in the release medium and a long duration sustained release was achieved.  相似文献   

6.
有无N-异丙基丙烯酰胺制备纳米微胶囊机理的比较   总被引:1,自引:1,他引:0  
通过研究交联剂对颗粒形态的影响, 提出小分子烃的逃逸是导致生成大量小尺寸实心粒子的主要原因, 而交联剂的加入在一定程度上能抑制小分子烃的逃逸. 将N-异丙基丙烯酰胺单体引入小分子烃为模板的细乳液聚合法制备的纳米微胶囊体系中, 水相引发形成的聚N-异丙基丙烯酰胺(PNIPA)齐聚物自由基在聚合温度下(大于最低临界溶液温度)析出并被细乳液液滴吸附, 在热力学推动力和静电斥力的共同作用下, PNIPA齐聚物倾向于分布在液滴和水的界面上, 使液滴界面成为主要的聚合场所, 单体从液滴内部向界面扩散补充消耗的单体, 生成的聚合物在液滴界面上析出, 包覆小分子烃液滴, 最终得到纳米微胶囊.  相似文献   

7.
Redox-responsive silica nanocapsules with a hydrophobic liquid core were synthesized by reactive templating of miniemulsion droplets with functional alkoxysilanes. Tetrasulfide bridges were successfully introduced into the inorganic shell and were found to be accessible for chemical reactions as shown by 31P-NMR spectroscopy. Indeed, the tetrasulfide groups could be reduced to yield thiol groups. A subsequent increase of permeability of the silica shell was observed upon reduction of the tetrasulfide groups.  相似文献   

8.
The stable nanodroplet was prepared by inverse miniemulsion with an aqueous antiseptic solution dispersed in an organic medium of solvent/nonsolvent mixture containing an oil-soluble surfactant and the polymer for shell formation. The change in gradient of the solvent/nonsolvent mixture, obtained by heating at 50 °C, led to the precipitation of the polymer in the organic phase and deposition onto the large interphase of the aqueous miniemulsion droplets. The monodisperse polymer nanocapsule, with the size range of 80–240 nm, dispersed in cyclohexane phase was achieved as a function of surfactant concentration. By variation of polymer content, molecular weight and type, an encapsulation efficiency of 20–100% was obtained as detected by proton-nuclear magnetic resonance spectroscopy measurement. The nanocapsule could be easily transferred into water as continuous phase resulting in aqueous dispersion with nanocapsule containing the antiseptic agent as an aqueous core. The encapsulated amount of the antiseptic agent was evaluated to indicate the durability of the nanocapsule's wall. Additionally, the different types of polymer having glass transition temperature ranging from −60 to 100°C have been successfully used. Currently, the research work on the incorporation of nanocapsules onto natural rubber (NR) latex in order to prepare NR latex glove containing the antiseptic agent nanocapsules is carried out. By using the simple and versatile layer-by-layer (LbL) technique based mainly on an electrostatic interaction between oppositely charged species, the deposition of nanocapsules onto NR latex film has successfully been fulfilled.  相似文献   

9.
A mathematical model of seeded miniemulsion copolymerization of styrene-methyl methacrylate for oil-soluble initiator is presented. The mathematical model includes the mass transfer, from the miniemulsion droplets to the polymer particles, by both molecular diffusion and collision between miniemulsion droplets and the polymer particles. The mathematical model also includes the calculation of both the distribution of partices with i radicals and the average number of radicals per particle in the miniemulsion copolymerization using oil-soluble initator. Studies were carried out on the mass transfer coefficients of monomers across the interface between the miniemulsion droplet and the aqueous phase, hexadecane concentration in the miniemulsion droplets, the miniemulsion droplet sizes, and the collision between miniemulsion droplets. The results indicated that the copolymerization of styrene-methyl methacrylate was not a mass transfer controlled process. The mass transfer by collision between miniemulsion droplets and polymer particles plays an important role and was included in the model in order to predict the experimental data of seeded miniemulsion copolymerization.  相似文献   

10.
This study describes the synthesis of well‐defined nanocapsules via the miniemulsion technique. Pentaerythritol tetrakis(3‐mercaptopropionate) (TetraThiol) or 1,6‐hexanediol di(endo, exo‐norborn‐2‐ene‐5‐carboxylate) (DiNorbornene) is used as the oil phase. TetraThiol is encapsulated via the miniemulsion technique without polymerization, as this monomer would simultaneously act as a chain‐transfer agent, and DiNorbornene is encapsulated via miniemulsion polymerization of styrene. Various styrene‐maleic anhydride (PSMA) copolymers and poly(styrene‐maleic anhydride)‐block‐polystyrene (PSMA‐b‐PS) block copolymers were used as surfactant for the synthesis of well‐defined nanocapsules with TetraThiol as the core material. The nanocapsules had a diameter of 150–350 nm and the particle size distribution was narrow. The use of PSMA‐b‐PS block copolymers as surfactant in combination with post‐addition of formaldehyde provided improved stability to the nanocapsules. DiNorbornene was encapsulated via miniemulsion polymerization of styrene, and a stable latex with a bimodal particle size distribution was obtained. The distribution of small particles had a size of 60 nm and the distribution of large particles had a size of 150 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
A water‐soluble comonomer, N‐isopropylacrylamide (NIPAM), and an oil‐soluble crosslinker, divinylbenzene (DVB), have been combined in a system for the synthesis of nanocapsules with crosslinked shells through interfacial miniemulsion polymerization by encapsulating a liquid nonsolvating hydrocarbon. Oligomers of poly(N‐isopropylacrylamide) (PNIPAM) were dehydrated and separated from the aqueous phase and were adsorbed by the nanodroplets or latex particles and then anchored at their interfaces by means of a crosslinking reaction. Nanocapsules were then formed through encapsulation of the hydrocarbon by the newly produced polymers at the interfaces of the droplets. The crosslinked structure gradually grew to stabilize the shell morphology. The incorporation of NIPAM into the shell copolymers has been verified by FTIR and solid‐state 13C NMR data. The fact that the number of nanocapsules increases with increasing amounts of DVB and NIPAM supports the formation of nanocapsules following interfacial (co)polymerization. Therefore, a mechanism for the formation of nanocapsules through interfacial (co)polymerization induced by NIPAM and DVB is proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1522–1534, 2009  相似文献   

12.
The modified nanoprecipitation of polymers onto stable nanodroplets has been successfully applied to prepare well-defined nanocapsules whose core is composing of an antiseptic agent, i.e., chlorhexidine digluconate aqueous solution. The stable nanodroplets were obtained by inverse miniemulsions with an aqueous antiseptic solution dispersed in an organic medium of solvent/nonsolvent mixture containing an oil-soluble surfactant and the polymer for the shell formation. The change of gradient of the solvent/nonsolvent mixture of dichloromethane/cyclohexane, obtained by heating at 50 degrees C, led to the precipitation of the polymer in the organic continuous phase and deposition onto the large interface of the aqueous miniemulsion droplets. The monodisperse polymer nanocapsules with the size range of 240-80 nm were achieved as a function of the amount of surfactant. Using various polymer contents, molecular weights and types, an encapsulation efficiency of 20-100% was obtained as detected by proton-nuclear magnetic resonance spectroscopy ((1)H NMR) measurements. The nanocapsules could be easily transferred into water as continuous phase resulting in aqueous dispersions with nanocapsules containing an aqueous core with the antiseptic agent. The encapsulated amount of the antiseptic agent was evaluated to indicate the durability of the nanocapsule's wall. In addition, the use of different types of polymers having glass transition temperatures (T(g)) ranging from 10 to 100 degrees C in this process has been also successful.  相似文献   

13.
Phase change material nanocapsules with n-dodecanol as the core and styrene-butyl acrylate copolymer as the shell were prepared by miniemulsion polymerization using interfacial redox initiation. The morphology, particle size, polydispersity index, thermal properties, and structure of the nanocapsules were characterized by TEM, laser particle diameter analyzer, DSC, TGA, and FT-IR. When the monomers/n-dodecanol mass ratio of 1:1 was used, the phase change enthalpy and encapsulation efficiency of the nanocapsules reached to 109.2 J/g and 98.4%, respectively. The thermal decomposition temperature of the nanocapsules was about 195 °C. Spherical nanocapsules with a mean diameter of 100 nm and a phase change temperature of 18.4 °C were obtained, which have good energy storage potential.  相似文献   

14.
Nimodipine loaded hydroxypropyl-β-cyclodextrin polymeric nanocapsules were prepared by interfacial polyaddition of hydroxypropyl-β-cyclodextrin and isophorone diisocyante in a miniemulsion system. The effects of ultrasonicate times on the preparation of miniemulsion, the total amount of hydroxypropyl-β-cyclodextrin and isophorone diisocyante, and the molar ratio of isophorone diisocyante to hydroxypropyl-β-cyclodextrin on the capsule size and drug release behavior from capsule were investigated. The chitosan based polymeric nanocapsules were prepared as a control to study the effect of hydroxypropyl-β-cyclodextrin molecules in capsule matrix on the drug release. The results indicated that the droplet size of miniemulsion and capsule size decreased with increasing sonicate times. When the total amount of hydroxypropyl-β-cyclodextrin and isophorone diisocyante, and the molar ratio of isophorone diisocyante to hydroxypropyl-β-cyclodextrin were increased, the capsule as well, but the drug release rates from capsules became slower. The drug release behaviors from hydroxypropyl-β-cyclodextrin polymeric nanocapsules were affected by the drug diffusion through the polymer matrix and the formation of inclusion complex between drug and hydroxypropyl-β-cyclodextrin.  相似文献   

15.
武琳 《高分子科学》2016,34(5):523-531
Miniemulsion stabilized by poly(2-(dimethylamino) ethyl methacrylate)-block-poly(butyl methylacrylate) (PDMAEMA-b-PBMA) diblock copolymers has been used as liquid templates for the synthesis of polymer nanocapsules via quaternization cross-linking of PDMAEMA segments of the copolymer by 1,2-bis(2-iodoethoxy)ethane (BIEE) crosslinkers. PDMAEMA-b-PBMAs here as a stabilizer in miniemulsion with different molecular weights led to a size variation in diameters of nanocapsules, demonstrating the capsules have potential design capability of this technique. The solution behavior of the capsules has been also investigated in this paper.  相似文献   

16.
A detailed investigation into the mechanisms of nanocapsule formation by means of the two stages "emulsion-diffusion" process is reported. Such widely used process is still poorly understood. An emulsion of oil, polymer and ethyl acetate is fabricated as a first step; dilution with pure water allows ethyl acetate to diffuse out from the droplets, leaving a suspension of nanocapsules at the end. It has been shown that the size of nanocapsules was related to the chemical composition of the organic phase and the size of primary emulsion through a simple geometrical relationship. As a consequence, most of the properties of the nanocapsules were decided at the emulsification step. The influence of several formulation and processing parameters of the primary emulsion was studied accordingly. The thin polymer membrane of nanocapsules was observed by means of cryo-fracture electron microscopy. Finally two experiments were designed for a mechanistic investigation of the diffusion step. A step-by-step diffusion of the organic solvent takes place by successive partition equilibria of ethyl acetate between the droplets and aqueous phase. A time-resolved experiment shows the fast diffusion (less than 20 ms) related to the small droplet size of the emulsion.  相似文献   

17.
Recently phase formation mechanisms have been estimated by using various fluorescent probes. In this report, the mixing process between internal phases of oil-in-water miniemulsions is discussed for two-dimensional color graphics data (two-dimensional fluorescence images) based on the excimer formation of pyrene as a hydrophobic fluorescent probe. Just after miniemulsion solution B (water, oil, and nonionic surfactant) was gradually added to miniemulsion A (water, oil, surfactant, and trace amount of pyrene) with gentle and careful stirring, the fluorescence spectra and the two-dimensional image of pyrene were measured. The decreasing of the excimer peak of pyrene was observed as soon as miniemulsion solution B was added. The result showed that pyrene initially located in miniemulsion droplets was smoothly diluted by the addition of miniemulsion droplets which contain only oil in the internal phase. The internal phases of miniemulsion droplets are miscible without changing the droplet diameter, and it is declared that pyrene transfers smoothly to the interface between droplets stabilized by the nonionic surfactant because the droplet diameter showed no significant difference throughout this mixing process. Received: 7 December 1999 Accepted: 11 April 2000  相似文献   

18.
Monomer droplet nucleation in the seeded miniemulsion polymerisation of styrene under monomer-flooded and monomer-starved conditions was studied. The miniemulsion feeds were added to the reactor either batchwise or semibatchwise. The droplets preserved longer under flooded conditions. As a result, the batch operation led to a larger number of particles (Np) than the semibatch operation. For the miniemulsion droplets containing predissolved polymer, the final Np was independent of the way that the feed was added to the reactor and was equivalent to the number of monomer droplets in the original miniemulsion feed. The size distribution of the final latexes, however, was influenced by the operation type. For the batch operation, the rate of polymerisation (Rp) with the miniemulsion feeds was higher than that with the conventional monomer emulsion feed because of the monomer droplet nucleation. But for the semibatch operation, the opposite was true because of Rp controlled by the rate of monomer diffusion from rather stable miniemulsion droplets to the growing polymer particles.  相似文献   

19.
The copolymerization of vinyl acetate (VAc) and vinyl 2-ethylhexanoate (V2EH) via miniemulsion polymerization is being investigated with the goal of better copolymer composition control. The reaction kinetics and final particle sizes were compared for homopolymerizations and copolymerizations of the two monomers. Enhanced polymerization rates were seen for the miniemulsion polymerizations over their conventional counterparts despite a decreased number of particles. This was attributed to the influence of the reactive surfactant sodium dodecyl allyl sulfosuccinate and low water solubility of the V2EH monomer. Increased nucleation of miniemulsion droplets was sought by incorporation of small amounts of polymer into the droplets. This was first shown to be effective for styrene miniemulsion polymerizations and was subsequently successfully extended to the VAc/V2EH system  相似文献   

20.
小分子液滴为模板制备有机-无机杂化纳米微胶囊   总被引:2,自引:0,他引:2  
通过细乳液聚合,在正辛烷液滴外包覆一层苯乙烯与甲基丙烯酸-3-三甲氧基硅丙酯(MPS)的共聚物,制备了有机-无机杂化纳米微胶囊.通过透射电镜和动态光散射粒径仪观测其形态,用红外光谱表征了其分子结构.讨论了聚合方法对微胶囊制备的影响;通过溶度参数的计算和实验验证,发现配方中单体体积分数需小于36%才能得到微胶囊;通过界面自由能模型的计算和动力学分析,说明了微胶囊形成的热力学原因;发现共聚物中MPS的加入有利于微胶囊的形成,但若MPS的含量过大将会导致胶囊塌陷;最后阐明了这种微胶囊制备过程的机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号