首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excitation of the 7-hydroxyquinoline(NH(3))(3) [7HQ(NH(3))(3)] cluster to the S(1) (1)pi pi(*) state results in an O-H-->NH(3) hydrogen atom transfer (HAT) reaction. In order to investigate the entrance channel, the vibronic S(1)<-->S(0) spectra of the 7HQ.(NH(3))(3) and the d(2)-7DQ.(ND(3))(3) clusters have been studied by resonant two-photon ionization, UV-UV depletion and fluorescence techniques, and by ab initio calculations for the ground and excited states. For both isotopomers, the low-frequency part of the S(1)<--S(0) spectra is dominated by ammonia-wire deformation and stretching vibrations. Excitation of overtones or combinations of these modes above a threshold of 200-250 cm(-1) for 7HQ.(NH(3))(3) accelerates the HAT reaction by an order of magnitude or more. The d(2)-7DQ.(ND(3))(3) cluster exhibits a more gradual threshold from 300 to 650 cm(-1). For both isotopomers, intermolecular vibrational states above the threshold exhibit faster HAT rates than the intramolecular vibrations. The reactivity, isotope effects, and mode selectivity are interpreted in terms of H atom tunneling through a barrier along the O-H-->NH(3) coordinate. The barrier results from a conical intersection of the optically excited (1)pi pi(*) state with an optically dark (1)pi sigma(*) state. Excitation of the ammonia-wire stretching modes decreases both the quinoline-O-H...NH(3) distance and the energetic separation between the (1)pi pi(*) and (1)pi sigma(*) states, thereby increasing the H atom tunneling rate. The intramolecular vibrations change the H bond distance and modulate the (1)pi pi(*)<-->(1)pi sigma(*) interaction to a much smaller extent.  相似文献   

2.
Excited state potential energy hypersurfaces of 7H-furo[3,2-g][1]benzopyran-7-one (psoralen) have been explored employing (time-dependent) Kohn-Sham density functional theory. At selected points, we have determined electronic excitation energies and electric dipole (transition) moments utilizing a combined density functional/multireference configuration interaction method. Spin-orbit coupling has been taken into account employing an efficient, non-empirical spin-orbit mean-field Hamiltonian. Franck-Condon factors have been computed for vibrational modes with large displacements in the respective Dushinsky transformations. The simulated band spectra closely resemble experimental band shapes and thus validate the theoretically determined nuclear structures at the S(0), S(1), and T(1) minima. In the S(1) (pi(HOMO)-->pi*(LUMO)) state, the lactone bond of the pyrone ring is significantly elongated. From excited vibrational levels of the S(1) state a conical intersection between a (pi-->sigma*) excited state and the electronic ground state may be energetically accessible. Fast non-radiative decay via this relaxation pathway could explain the low fluorescence quantum yield of psoralen. The T(1) (pi(HOMO-1)-->pi*(LUMO)) exhibits a diradicaloid electronic structure with a broken C(5)-C(6) double bond in the pyrone ring. A variational multireference spin-orbit configuration interaction procedure yields a phosphorescence lifetime of 3 s, in excellent agreement with experimental estimates.  相似文献   

3.
The UV fluorescence excitation and dispersed fluorescence spectra of a jet-cooled m-methylaniline have been obtained for the S1<--S0 transition, in which some of the bands have been observed for the first time. The main spectral bands have been assigned by comparison with those of other relevant substituted benzenes. It was found that the spectra exhibit an important feature which is the internal rotation of the methyl group in the electronic ground and excited states. Ab initio calculations at MP2/6-31G* and CIS/6-31G* show that the optimized structure of m-methylaniline in the ground state is not planar with the amino group having sp3 hybridation-like character due to the existence of lone-paired electrons on the nitrogen atom. Upon electronic excitation, the C-N bond exhibits a partial double bond character, indicating an enhanced interaction between the ring and the NH2 group as in the case of aniline.  相似文献   

4.
Measurements of the Stark effect on the rotationally resolved S(1)<--S(0) fluorescence excitation spectrum of aniline are reported, providing quantitative information about the degree of charge transfer in the electronic transition. We find that mu(a)(S(1)) = 2.801 +/- 0.007 D, a value that is approximately 150% larger than the ground state, mu(a)(S(0)) = 1.129 +/- 0.005 D. The enhanced value of the dipole moment in the S(1) state is attributed to more efficient electron donation by the quasi-planar amino group to the aromatic ring.  相似文献   

5.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

6.
The widely investigated photobehaviors of 9-bromo and 9,10-di-bromoanthracenes have been revisited here to clarify the competition among different relaxation paths of their lowest two electronic excited states. The results obtained show that these two molecules exhibit a parallel photobehavior, which depends on the excited electronic and vibronic transition, the medium viscosity, and the temperature. The first electronic state of either of these does not exhibit photochemistry in fluid solution or rigid matrices (80 K). The fluorescence emission occurs with a very low quantum yield (approximately 10(-2)) at room temperature but with a very high quantum yield (0.9 to approximately 1) at 80 K. When exciting in the second electronic transition, the fluorescence intensity is lower than when exciting in S1 at both room temperature and low temperature due to competition with the observed photocleavage of the C-Br bond. The reaction yield decreases as the temperature decreases and depends on the viscosity of the solvent; the higher the viscosity, the lower the observed yield of photochemistry. Temperature and viscosity effects are a consequence of the fact that the radicals produced by C-Br bond breakage cannot escape from the solvent cage and, moreover, quickly recombine within the cage giving the appearance that no photochemistry occurred. The presence of photochemistry in S(2) and its absence in S(1) is principally due to the fact that S(2) has a pi,sigma* character in the C-Br bond, whereas the S(1) state has its origin from a pi,pi* delocalized configuration.  相似文献   

7.
Rotationally resolved fluorescence excitation spectra of the 0(0)(0) bands of the S1<--S0 electronic transitions of 2- and 5-methylpyrimidine (2MP and 5MP, respectively) have been observed and assigned. Both spectra were found to contain two sets of rotational lines, one associated with the sigma=0 torsional level and the other associated with the sigma=+/-1 torsional level of the attached methyl group. Analyses of their structure using the appropriate torsion-rotation Hamiltonian yields the methyl group torsional barriers of V6'=1.56 and V6'=8.28 cm(-1) in 2MP and V6'=4.11 and V6'=58.88 cm(-1) in 5MP. Many of the lines in both spectra are fragmented by couplings with lower lying triplet states. Analyses of some of these perturbations yield approximate values of the intersystem crossing matrix elements, from which it is concluded that the sigma=+/-1 torsional levels of the S1 state are significantly more strongly coupled to the T1 state than the sigma=0 torsional levels.  相似文献   

8.
The vibrational structure, rotational structure, and electronic relaxation of the "dark" T1 3A2(n,pi*) state of jet-cooled thiophosgene have been investigated by two-color S2<--T1<--S0 optical-optical double resonance (OODR) spectroscopy, which monitors the S2-->S0 fluorescence generated by S2<--T1 excitation. This method is capable of isolating the T1 vibrational structure into a1, b1, and b2 symmetry blocks. The fluorescence-detected vibrational structure of the Tz spin state of T1 shows that the CS stretching frequency as well as the barrier height for pyramidal deformation are significantly greater in the 3A2(n,pi*) state than in the corresponding 1A2(n,pi*) state. The differing vibrational parameters of the T1 thiophosgene relative to the S1 thiophosgene can be attributed to the motions of unpaired electrons that are better correlated when they are in the excited singlet state than when they are in the triplet state of same electron configuration. A set of T1 structural parameters and the information concerning the T1 spin states have been obtained from least-square fittings of the rotationally resolved T1<--S0 excitation spectrum. The nearly degenerate mid R:x and mid R:y spin states are well removed from mid R:z spin component, indicating that T1 thiophosgene is a good example of case (ab) coupling. The decay of the mid R:z spin state of T1 thiophosgene, obtained from time-resolved S2<--T1<--S0 OODR experiment, is characteristic of strong-coupling intermediate-case decay in which an initial rapid decay is followed by recurrences and/or a long-lived quasiexponential decay.  相似文献   

9.
The photoinduced hydrogen elimination reaction in phenol via the conical intersections of the dissociative 1pi sigma* state with the 1pi pi* state and the electronic ground state has been investigated by time-dependent quantum wave-packet calculations. A model including three intersecting electronic potential-energy surfaces (S0, 1pi sigma*, and 1pi pi*) and two nuclear degrees of freedom (OH stretching and OH torsion) has been constructed on the basis of accurate ab initio multireference electronic-structure data. The electronic population transfer processes at the conical intersections, the branching ratio between the two dissociation channels, and their dependence on the initial vibrational levels have been investigated by photoexciting phenol from different vibrational levels of its ground electronic state. The nonadiabatic transitions between the excited states and the ground state occur on a time scale of a few tens of femtoseconds if the 1pi pi*-1pi sigma* conical intersection is directly accessible, which requires the excitation of at least one quantum of the OH stretching mode in the 1pi pi* state. It is shown that the node structure, which is imposed on the nuclear wave packet by the initial preparation as well as by the transition through the first conical intersection (1pi pi*-1pi sigma*), has a profound effect on the nonadiabatic dynamics at the second conical intersection (1pi sigma*-S0). These findings suggest that laser control of the photodissociation of phenol via IR mode-specific excitation of vibrational levels in the electronic ground state should be possible.  相似文献   

10.
Radiative relaxation of S 2p-excited hydrogen sulfide (H(2)S) is investigated by dispersed ultraviolet and visible fluorescence spectroscopies. We observe distinct changes in the fluorescence spectra as a function of excitation energy. Excitation to Rydberg states below the S 2p ionization threshold yields intense fluorescence from neutral and ionic atomic fragments (H, S(+), and S(2+)). In addition to the atomic emission, fluorescence of the molecular fragment ion HS(+) is preferably found after excitation of the S 2p electron into the unoccupied 6a(1) and 3b(2) orbitals with sigma(*) character. This is interpreted as evidence for ultrafast dissociation of the core-excited molecule prior to electronic relaxation. The rotationally resolved fluorescence spectra of the A (3)Pi-->X (3)Sigma(-) transition are analyzed in terms of the fragmentation dynamics leading to the formation of the excited molecular fragment ion, where changes in bond angle are discussed in terms of the rotational population.  相似文献   

11.
A combination of supersonic-jet laser spectroscopy and quantum chemistry calculation was applied to 1,4-bis(phenylethynyl)benzene, BPEB, to study the role of the dark pisigma* state on electronic relaxation and the effect of ring torsion on electronic spectra. The result provides evidence for fluorescence break-off in supersonic jet at high S1(pi pi*) <-- S0 excitation energies, which can be attributed to the pi pi*-pi sigma* intersection. The threshold energy for the fluorescence break-off is much larger in BPEB (approximately 4000 cm(-1)) than in diphenylacetylene (approximately 500 cm(-1)). The high-energy barrier in BPEB accounts for the very large fluorescence quantum yield of the compound (in solution) relative to diphenylacetylene. The comparison between the experimentally derived torsional barrier and frequency with those from the computation shows overall good agreement and demonstrates that the low-energy torsional motion involves the twisting of the end ring in BPEB. The torsional barrier is almost an order of magnitude greater in the pi pi* excited state than in the ground state. The finding that the twisting of the end ring in BPEB is relatively free in the ground state, but strongly hindered in the excited state, provides rationale for the well-known temperature dependence of the spectral shape of absorption and the lack of mirror symmetry relationship between the absorption and fluorescence at elevated temperatures.  相似文献   

12.
13.
Rotationally resolved fluorescence excitation spectra of the S(1)<--S(0) origin band of 7-azaindole [1H-pyrrolo(2,3-b)pyridine] and its argon atom van der Waals complex have been recorded and assigned. The derived rotational constants give information about the geometries of the two molecules in both electronic states. The equilibrium position of the argon atom in the azaindole complex is considerably different from its position in the corresponding indole complex. Furthermore, the argon atom moves when the UV photon is absorbed. There are significant differences in the intermolecular potential energy surfaces in the two electronic states. A large, vibration-state-dependent rotation of the S(1)<--S(0) electronic transition moment vector of 7-azaindole relative to that of indole suggests that these differences have their origin in S(1)/S(2) electronic state mixing in the isolated molecule, a mixing that is enhanced by nitrogen substitution in the six-membered ring.  相似文献   

14.
The phosphorescence excitation (PE) spectrum of 4H-pyran-4-one (4PN) vapor at 40-50 degrees C was recorded near 366 nm. The most intense vibronic feature in this region of the spectrum is the T(1)(n,pi*)<--S(0) origin band. The value of nu(0) for the 0(0)(0) transition was determined to be 27 291.5 cm(-1) by comparing the observed spectrum to a simulation in the T(1)<--S(0) origin-band region. Attached to the origin band in the PE spectrum are several Deltav=0 sequence bands involving low-frequency ring modes. From the positions of these bands, together with the known ground-state combination differences, fundamental frequencies for nu(18') (ring bending), nu(13') (ring twisting), and nu(10') (in-plane ring deformation) in the T(1)(n,pi*) excited state were determined to be 126, 269, and 288 cm(-1), respectively. These values represent drops of 15%, 32%, and 43%, compared to the respective fundamental frequencies in the S(0) state. The changes in these ring frequencies indicate that the effects of T(1)(n,pi*)<--S(0) excitation extend beyond the nominal carbonyl chromophore and involve the conjugated ring atoms as well. The delocalization may be more extensive for T(1)(n,pi*) than for S(1)(n,pi*) excitation.  相似文献   

15.
Radical cations of trans-stilbene and substituted trans-stilbenes (stilbenes and the radical cations denote Sand S(*+), respectively) were generated from the resonant two-photon ionization (TPI) in acetonitrile with irradiation of one-laser (266- or 355-nm laser) and with simultaneous irradiation of two-color two-lasers (266- and 532-nm or 355- and 532-nm lasers) with the pulse width of 5 ns each. The formation yields of S(*+), the TPI efficiency, depended on the properties of S in the lowest and higher singlet excited state (S(S(1)) and S(S(n))), generated from one-photon excitation with 266- or 355-nm laser and from two-photon excitation with simultaneous irradiation of 266- and 532-nm or 355- and 532-nm lasers, respectively. The TPI efficiency using two-color two-lasers increased compared with that using one-laser. It is confirmed that the TPI proceeds through two-step two-photon excitation with the S(0) --> S(1) --> S(n)() transition. In addition to the electronic character of S(S(0)) which depends on the substituent of S, oxidation potential, and molar absorption coefficient of the S(0) --> S(1) absorption as well-known important factors for the TPI efficiency, it is shown that properties of S(S(1)) and S(S(n)) such as lifetimes, electronic characters of S(S(1)) and S(S(n)), molar absorption coefficient of the S(1) --> S(n) absorption, and ionization rate from S(S(n)) are also important.  相似文献   

16.
We report the observation at high resolution of seven vibronic bands that appear within approximately 200 cm(-1) of the electronic origin in the S(1)-S(0) fluorescence excitation spectrum of 4,4'-dimethylaminobenzonitrile (DMABN) in a molecular beam. Surprisingly, each band is found to be split into two or more components by a (coordinated) methyl group tunneling motion which significantly complicates the analysis. Despite this fact, high quality [(Observed-Calculated)< or =30 MHz] fits of each of the bands have been obtained, from which the rotational constants, inertial defects, torsion-rotation interaction constants, methyl group torsional barriers, and transition moment orientations of DMABN in both electronic states have been determined. The data show that DMABN is a slightly pyramidalized (approximately 1 degree) but otherwise (heavy-atom) planar molecule in its ground S(0) state, and that its electronically excited S(1) state has both a more pyramidalized (approximately 3 degrees) and twisted (approximately 25 degrees) dimethylamino group. Large reductions in the methyl group torsional barriers also show that the S(1)<--S(0) electronic transition is accompanied by significant charge transfer from the nitrogen atom to the pi* orbitals of the aromatic ring. Thereby established is the participation of all three vibrational coordinates in the dynamics leading to the "anomalous" emissive behavior of DMABN in the condensed phase.  相似文献   

17.
(Time-dependent) Kohn-Sham density functional theory and a combined density functional/multi-reference configuration interaction method (DFT/MRCI) were employed to explore the ground and low-lying electronically excited states of thiophene. Spin-orbit coupling was taken into account using an efficient, nonempirical mean-field Hamiltonian. Phosphorescence lifetimes were calculated by means of spock.ci, a selecting direct multi-reference spin-orbit configuration interaction program. Throughout this paper, we use the following nomenclature: S1, S2,..., T1, T2,..., denominate electronic structures in their energetic order at the ground state minimum geometry, whereas S1, S2,..., T1, T2,..., refers to the actual order of electronic states at a given nuclear geometry. Multiple minima were found on the first excited singlet (S1) potential energy hypersurface with electronic structures S1 (piHOMO-1-->pi+piHOMO-->pi), S2 (piHOMO-->pi), and S3 (piHOMO-->sigma*) corresponding to the 2 1A1 (S1), 1 1B2 (S2), and 1 1B1 (S3) states in the vertical absorption spectrum, respectively. The S1 and S2 minimum geometries show out-of-plane deformations of the ring. The S3 electronic structure yields the global minimum on the S1 surface with an adiabatic excitation energy of merely 3.81 eV. It exhibits an asymmetric planar nuclear arrangement with one significantly elongated C-S bond. A constrained minimum energy path calculation connecting the S1 and S3 minima suggests that even low-lying vibrational levels of the S1 potential well can access the global minimum of the S1 surface. Nonradiative decay of the electronically excited singlet population to the electronic ground state via a close-by conical intersection will be fast. According to our work, this ring opening mechanism is most likely responsible for the lack of fluorescence in thiophene and the ultrafast decay of the S1 vibrational levels, as observed in time-resolved pump-probe femtosecond multiphoton ionization experiments. An alternative relaxation pathway leads from the S1 minimum via vibronic coupling to the S2 potential well followed by fast inter-system crossing to the T2 state. For an estimate of individual rate constants a quantum dynamical treatment will be required. The global minimum of the T1 surface has a chair-like nuclear conformation and corresponds to the T1 (1 3B2, piHOMO-->pi) electronic structure. Phosphorescence is weak here with a calculated radiative lifetime of 0.59 s. For the second potential well on the T1 surface with T3 (1 3B1, piHOMO-->sigma*) electronic structure, nonradiative processes are predicted to dominate the triplet decay.  相似文献   

18.
The fragmentation dynamics of gas phase phenol molecules following excitation at many wavelengths in the range 279.145 > or = lambdaphot > or = 206.00 nm have been investigated by H Rydberg atom photofragment translational spectroscopy. Many of the total kinetic energy release (TKER) spectra so derived show structure, the analysis of which confirms the importance of O-H bond fission and reveals that the resulting phenoxyl cofragments are formed in a very limited subset of their available vibrational state density. Spectra recorded at lambdaphot > or = 248 nm show a feature centered at TKER approximately 6500 cm(-1). These H atom fragments, which show no recoil anisotropy, are rationalized in terms of initial S1<--S0 (pi*<--pi) excitation, and subsequent dissociation via two successive radiationless transitions: internal conversion to ground (S0) state levels carrying sufficient O-H stretch vibrational energy to allow efficient transfer towards, and passage around, the conical intersection (CI) between the S0 and S2(1pisigma*) potential energy surfaces (PESs) at larger R(O-H), en route to ground state phenoxyl products. The observed phenoxyl product vibrations indicate that parent modes nu16a and nu11 can both promote nonadiabatic coupling in the vicinity of the S0S2 CI. Spectra recorded at lambdaphot < or = 248 nm reveal a faster, anisotropic distribution of recoiling H atoms, centered at TKER approximately 12,000 cm(-1). These we attribute to H+phenoxyl products formed by direct coupling between the optically excited S1(1pi pi*) and repulsive S2(1pi sigma*) PESs. Parent mode nu16b is identified as the dominant coupling mode at the S1/S2 CI, and the resulting phenoxyl radical cofragments display a long progression in nu18b, the C-O in-plane wagging mode. Analysis of all structured TKER spectra yields D0(H-OC6H5) = 30,015 +/- 40 cm(-1). The present findings serve to emphasize two points of wider relevance in contemporary organic photochemistry: (i) The importance of 1) pi sigma* states in the fragmentation of gas phase heteroaromatic hydride molecules, even in cases where the 1pi sigma* state is optically dark. (ii) The probability of observing strikingly mode-specific product formation, even in "indirect" predissociations, if the fragmentation is driven by ultrafast nonadiabatic couplings via CIs between excited (and ground) state PESs.  相似文献   

19.
The excited-state properties and related photophysical processes of the acidic and basic forms of pterin have been investigated by the density functional theory and ab initio methodologies. The solvent effects on the low-lying states have been estimated by the polarized continuum model and combined QM/MM calculations. Calculations reveal that the observed two strong absorptions arise from the strong pi --> pi* transitions to 1(pipi*L(a)) and 1(pipi*L(b)) in the acidic and basic forms of pterin. The first 1(pipi*L(a)) excited state is exclusively responsible for the experimental emission band. The vertical 1(n(N)pi*) state with a small oscillator strength, slightly higher in energy than the 1(pipi*L(a)) state, is less accessible by the direct electronic transition. The 1(n(N)pi*) state may be involved in the photophysical process of the excited pterin via the 1(pipi*L(a)/n(N)pi*) conical intersection. The radiationless decay of the excited PT to the ground state experiences a barrier of 13.8 kcal/mol for the acidic form to reach the (S(1)/S(0)) conical intersection. Such internal conversion can be enhanced with the increase in excitation energy, which will reduce the fluorescence intensity as observed experimentally.  相似文献   

20.
Two methylated thienocarbazoles and two of their synthetic nitro-precursors have been examined by absorption, luminescence, laser flash photolysis and photoacoustic techniques. Their spectroscopic and photophysical characterization involves fluorescence spectra, fluorescence quantum yields and lifetimes, and phosphorescence spectra and phosphorescence lifetimes for all the compounds. Triplet-singlet difference absorption spectra, triplet molar absorption coefficients, triplet lifetimes, intersystem crossing S1 --> T1 and singlet molecular oxygen yields were obtained for the thienocarbazoles. In the case of the thienocarbazoles it was found that the lowest-lying singlet and triplet excited states, S1 and T1, are of pi,pi* origin, whereas for their precursors S1 is n,pi*, and T1 is pi,pi*. In both thienocarbazoles it appears that the thianaphthene ring dictates the S1 --> T1 yield, albeit there is less predominance of that ring in the triplet state of the linear thienocarbazole, which leads to a decrease in the observed phiT value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号