首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns in the interaction of cationic surfactants with nonionic polymer gels, which were inferred from a recent study from our laboratory, are confirmed by measurements of a series of alkylammonium surfactants with different counterions with a series of alkyl acrylamide gels of increasing hydrophobicity. Two swelling patterns were observed: Either the swelling continued above the surfactant critical micelle concentration (cmc) and the maximum swelling differed for different counterions and increased in the order of Br-相似文献   

2.
3.
A density-functional approach and canonical Monte Carlo simulations are presented for describing the ionic microscopic structure around the DNA molecule immersed in mixed-size counterion solutions. In the density-functional approach, the hard-sphere contribution to the Helmholtz energy functional is obtained from the modified fundamental measure theory [Y.-X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)], and the electrostatic contribution is evaluated through a quadratic functional Taylor expansion. The new theory is suitable to the systems containing ions of arbitrary sizes and valences. In the established canonical Monte Carlo simulation, an iterative self-consistent method is used to evaluate the long-range energy, and another iterative algorithm is adopted to obtain desired bulk ionic concentrations. The ion distributions from the density-functional theory (DFT) are in good agreement with those from the corresponding Monte Carlo (MC) simulations. It is found that the ratio of the bulk concentrations of two species of counterions (cations) makes significant contribution to the ion distributions in the vicinity of DNA. Comparisons with the electrostatic potential profiles from the MC simulations show that the accuracy of the DFT becomes low when a small divalent cation exists. Both the DFT and MC simulation results illustrate that the electrostatic potential at the surface of DNA increases as the anion diameter or the total cation concentration is increased and decreases as the diameter of one cation species is increased. The calculation of electrostatic potential using real ion diameters shows that the accuracy of DFT predictions for divalent ions is also acceptable.  相似文献   

4.
We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.  相似文献   

5.
A lattice model for ionic surfactants with explicit counterions is proposed for which the micellization behavior can be accurately determined from grand canonical Monte Carlo simulations. The model is characterized by a few parameters that can be adjusted to represent various linear surfactants with ionic headgroups. The model parameters have a clear physical interpretation and can be obtained from experimental data unrelated to micellization, namely, geometric information and solubilities of tail segments. As a specific example, parameter values for sodium dodecyl sulfate were obtained by optimizing for the solubility of hydrocarbons in water and the structural properties of dodecane. The critical micelle concentration (cmc), average aggregation number, degree of counterion binding, and their dependence on temperature were determined from histogram reweighting grand canonical Monte Carlo simulations and were compared to experimental results. The model gives the correct trend and order of magnitude for all quantities but underpredicts the cmc and aggregation number. We suggest ways to modify the model that may improve agreement with experimental values.  相似文献   

6.
The phenomenon of counterion condensation around a flexible polyelectrolyte chain with N monomers is investigated by Monte Carlo simulations in terms of the degree of ionization alpha, which is proportional to the effective charge. It is operationally defined as the ratio of observed to intrinsic counterion concentration, alpha = co/ci. The observed counterion concentration in the dilute polyelectrolyte solution is equivalent to an electrolyte solution of concentration co with the same counterion chemical potential. It can be determined directly by thermodynamic experiments such as ion-selective electrode. With the polyelectrolyte fixed at the center of the spherical Wigner-Seitz cell, the polymer conformation, counterion distribution, and chemical potential can be obtained. Our simulation shows that the degree of ionization rises as the polymer concentration decreases. This behavior is opposite to that calculated from the infinitely long charged rod model, which is often used to study counterion condensation. Moreover, we find that, for a specified line charge density, alpha decreases with an increment in chain length and chain flexibility. In fact, the degree of ionization is found to decline with increasing polymer fractal dimension, which can be tuned by varying bending modulus and solvent quality. Those results can be qualitatively explained by a simple model of two-phase approximation.  相似文献   

7.
Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.  相似文献   

8.
The critical micelle concentration (cmc) of sodium dioctylsulfosuccinate (AOT) was determined at 25 °C from surface tension and fluorescence methods in aqueous NH(4)Cl solution for assessing the influence of mixed counterions on the special counterion binding behavior (SCB) of AOT. The SCB of AOT refers to a sudden twofold increase in the value of the counterion binding constant (β) in aqueous medium when the concentration (c(*)) of the added 1:1 sodium salt is about 0.015 mol kg(-1), and it has been tested so far for sodium ion only. In the presence of sodium and ammonium mixed counterions also the SCB of AOT exist, but with lower c(*) (0.009 mol kg(-1) NH(4)Cl). Synergism in the cmc occurs due to mixed counterions. In the case of inorganic counterions, unlike the case with organic counterions, the cmc is dependent on the total counterion concentration in solution and negligibly on the specific type of counterion. Na(+) and NH(4)(+) bind almost equally to the micelle in the region of low β (below c(*)), but in the region of high β (above c(*)) NH(4)(+) binds predominantly. It has been shown that the theoretical expression for the surface excess of ionic surfactant+electrolyte system containing a single counterion can also be used to evaluate the surface excess in the presence of mixed counterions if the two counterions are considered to undergo Henry-type adsorption at the air-solution interface.  相似文献   

9.
The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-electrolytes with different ion sizes.  相似文献   

10.
The influence of different counterions on the adsorption behavior of the ionic soluble surfactant dodecyl-dimethylammonium-pyridimium bromide is investigated. The addition of potassium halogenides to aqueous solutions of the surfactant modifies the surface activity of the amphiphile and has a profound influence on the surface tension isotherms. The measured critical micelle concentration follows the order of the periodic table of elements which is in strong contrast to the surface excess. The number density of the adsorbed surfactants at the cmc does not depend on the amount of counterions in the solution but on the nature of the counterion. Furthermore, evidence is provided that the surface region is depleted on fluoride ions. Surface second harmonic generation and ellipsometry have been used to gain direct structural information which complement the thermodynamic considerations. The combination of both optical techniques yields the number density of the condensed counterions within the compact layer. A strategy to retrieve selected parameters of the ion binding model of Radke et al. is presented. The analysis of the optical data reveal the existence of a phase transition towards a surface condensed state with increasing salt condensation.  相似文献   

11.
采用单分子荧光显微统计光谱技术,通过将pH响应型荧光探针分子精确标记于聚苯乙烯磺酸钠分子链末端,并通过不同长度的多肽链调节分子链与探针分子间的距离,有效测量了聚苯乙烯磺酸钠单分子链的抗衡离子浓度的空间分布.实验结果清晰展示了聚电解质分子链的抗衡离子云结构,并确定了抗衡离子浓度随着距离分子链末端长度的不同而发生变化的规律,为描述聚电解质抗衡离子浓度的径向分布特征提供了实验信息.  相似文献   

12.
We have applied a restricted grand canonical Monte Carlo procedure to describe, in the framework of the primitive model, the counterion exchange mechanism between diffuse layers of counterions surrounding segregated charged lamellae. The net charge transfer between the dense and dilute domains is shown to vary as a function of the valence of the neutralizing counterions: undercharging of the dense interlayer is detected in the presence of monovalent counterions and overcharging with divalent counterions. Furthermore, no net reduction of the swelling pressure is detected for monovalent counterions, while a large enhancement of the net interlamellar attraction is found for charged lamellae neutralized by divalent counterions.  相似文献   

13.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.  相似文献   

14.
A substantial amount of experimental and numerical evidence has shown that the Derjaguin-Landau-Verwey-Overbeek theory is not suitable for describing those colloidal solutions that contain multivalent counterions. Toward improved understanding of such solutions, the authors report Monte Carlo calculations wherein, following Rouzina and Bloomfield, they postulate that, in the absence of van der Waals forces, the overall force between two isolated charged colloidal particles in electrolyte solutions is determined by a dimensionless parameter Gamma=z(2)l(B)/a, which measures the electrostatic repulsion between counterions adsorbed on the macroion surface, where z = counterion valence, l(B)=Bjerrum length, and a = average separation between counterions on the macroion surface calculated as if the macroion were fully neutralized. The authors find, first, that the maximum repulsion between like-charged macroions occurs at Gamma approximately 0.5 and, second, that onset of attraction occurs at Gamma approximately 1.8, essentially independent of the valence and concentration of the surrounding electrolyte. These observations might provide new understanding of interactions between electrostatic double layers and perhaps offer explanations for some electrostatic phenomena related to interactions between DNA molecules or proteins.  相似文献   

15.
The physical properties of organic nanotubes attract increasing attention due to their potential benefit in technology, biology and medicine. We study the effect of ion size on the electrical properties of cylindrical nanotubes filled with electrolyte solution within a modified Poisson-Boltzmann (PB) approach. For comparison purposes, small hollow nanospheres filled with electrolyte solution are considered. The finite size of the particles in the inner electrolyte solution is described by the excluded volume effect within a lattice statistics approach. We found that an increased ion size reduces the number of counterions near the charged inner surface of the nanotube, leading to an enlarged electrostatic surface potential. The concentration of counterions close to the inner surface saturates for higher surface charge densities and larger ions. In the case of saturation, the closest counterion packing is achieved, all lattice sites near the surface are occupied and an actual counterion condensation is observed. By contrast, the counterion concentration at the axis of the nanotube steadily increases with increasing surface charge density. This growth is more pronounced for smaller nanotube radii and larger ions. At larger nanotube radii for small ion size counterion condensation may also be observed according to the Tsao criterion, i.e. the counterion concentration at the centre is independent of the number of counterions in the system. With decreasing radius the Tsao condensation effect is shifted towards physiologically unrealistic surface charge densities.  相似文献   

16.
A potentiometric technique based on surfactant ion selective electrode has been used for various cationic and anionic surfactants. The data obtained contain m 1 (surfactant monomer concentration); m 2 (free counterion concentration) and α (degree of dissociation of micelle) were used for determination of aggregation number at and above cmc (critical micelle concentration). Data fitting show a relationship between aggregation number with such parameters. The correlation equation obtained shows that size of ionic micelle vary sharply after cmc. Also, the equation obtained shows size of micelle growth with increase in counterion concentration.  相似文献   

17.
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.  相似文献   

18.
The Monte Carlo simulation technique has been used to calculate the electrostatic force acting upon a charged aggregate outside a similarly charged wall. Contrary to intuition and existing electrostatic theories, the force is found to be attractive for some realistic values of the parameters determining the system. High surface charge density, low temperature, low relative permitivity and polyvalent neutralizing counterions are all factors that favour a net attraction between the wall and the aggregate. In some cases the resulting electrostatic attractive force is found to be an order of magnitude larger than the ordinary van der Waals attraction applied in the DLVO theory of colloidal stability. The attractive interaction is interpreted as being due to currelations between the counterions in the electric double layers.  相似文献   

19.
We report a systematic study by Langevin dynamics simulation on the energetics of complexation between two oppositely charged polyelectrolytes of same charge density in dilute solutions of a good solvent with counterions and salt ions explicitly included. The enthalpy of polyelectrolyte complexation is quantified by comparisons of the Coulomb energy before and after complexation. The entropy of polyelectrolyte complexation is determined directly from simulations and compared with that from a mean-field lattice model explicitly accounting for counterion adsorption. At weak Coulomb interaction strengths, e.g., in solvents of high dielectric constant or with weakly charged polyelectrolytes, complexation is driven by a negative enthalpy due to electrostatic attraction between two oppositely charged chains, with counterion release entropy playing only a subsidiary role. In the strong interaction regime, complexation is driven by a large counterion release entropy and opposed by a positive enthalpy change. The addition of salt reduces the enthalpy of polyelectrolyte complexation by screening electrostatic interaction at all Coulomb interaction strengths. The counterion release entropy also decreases in the presence of salt, but the reduction only becomes significant at higher Coulomb interaction strengths. More significantly, in the range of Coulomb interaction strengths appropriate for highly charged polymers in aqueous solutions, complexation enthalpy depends weakly on salt concentration and counterion release entropy exhibits a large variation as a function of salt concentration. Our study quantitatively establishes that polyelectrolyte complexation in highly charged Coulomb systems is of entropic origin.  相似文献   

20.
We show in this study that the concepts of nonextensive thermodynamics introduced and applied in a series of previous studies can be used to describe the behaviour of ionic surfactant solutions at concentrations higher than the critical micelle concentration (cmc) in pure solvents and in the presence of electrolytes. We supposed that the aggregated amphiphiles and their counter ions form two interpenetrated nonextensive phases of the same thermodynamic dimension, m, characterised by two parameters A(am) and A(CI) related to the aggregated amphiphile and the counter ion, respectively. Our experimental results and those published in the literature indicate that logarithms of the activities of the amphiphile and of its counterion vary with the quantity of aggregated monomer according to a power law. Thus, we demonstrate a linear relation between the logarithms of the activities of the two ions beyond the cmc in pure solvents ("micellization product"). An original relation, different from the Corrin-Harkins relation, can thus be established to describe the effects of salt on the cmc of ionic surfactants. According to this relation the cmc of charged surfactant in some systems can increase in the presence of an electrolyte with a common ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号