首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two mononuclear copper complexes, {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}(3,5‐dimethyl‐1H‐pyrazole‐κN2)(perchlorato‐κO)copper(II) perchlorate, [Cu(ClO4)(C5H8N2)(C12H19N5)]ClO4, (I), and {bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl‐κN2)methyl]amine‐κN}bis(3,5‐dimethyl‐1H‐pyrazole‐κN2)copper(II) bis(hexafluoridophosphate), [Cu(C5H8N2)2(C12H19N5)](PF6)2, (II), have been synthesized by the reactions of different copper salts with the tripodal ligand tris[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (TDPA) in acetone–water solutions at room temperature. Single‐crystal X‐ray diffraction analysis revealed that they contain the new tridentate ligand bis[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methyl]amine (BDPA), which cannot be obtained by normal organic reactions and has thus been captured in the solid state by in situ synthesis. The coordination of the CuII ion is distorted square pyramidal in (I) and distorted trigonal bipyramidal in (II). The new in situ generated tridentate BDPA ligand can act as a meridional or facial ligand during the process of coordination. The crystal structures of these two compounds are stabilized by classical hydrogen bonding as well as intricate nonclassical hydrogen‐bond interactions.  相似文献   

2.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

3.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

4.
The structures of dichloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}copper(II), [CuCl2(C12H12N4)], and di‐μ‐chloro‐bis(chloro{2‐[(5‐methyl‐1H‐pyrazol‐3‐yl‐κN2)methyl]‐1H‐1,3‐benzimidazole‐κN3}­cadmium(II)), [Cd2Cl4(C12H12N4)2], show that these compounds have the structural formula [ML(Cl)2]n, where L is 2‐[(5‐methylpyra­zolyl)methyl]benzimidazole. When M is copper, the complex is a monomer (n = 1), with a tetrahedral coordination for the Cu atom. When M is cadmium (n = 2), the complex lies about an inversion centre giving rise to a centrosymmetric dimer in which the Cd atoms are bridged by two chloride ions and are pentacoordinated.  相似文献   

5.
Three coordination complexes with CuI centres have been prepared using the symmetrical flexible organic ligands 1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane (L1) and 1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane (L2). Crystallization of L1 with Cu(SO3CF3)2 and of L2 with Cu(BF4)2 and Cu(ClO4)2 in a CH2Cl2/CH3OH mixed‐solvent system at room temperature afforded the coordination complexes catena‐poly[[copper(I)‐μ‐1,3‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}propane] methanesulfonate dichloromethane 0.6‐solvate], {[Cu(C25H18N6O2S2)](CF3SO3)·0.6CH2Cl2}n, (I), bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(tetrafluoridoborate)–dichloromethane–methanol (1/1.5/1), [Cu2(C26H20N6O2S2)2](BF4)2·1.5CH2Cl2·CH3OH, (II), and bis(μ‐1,4‐bis{[5‐(quinolin‐2‐yl)‐1,3,4‐oxadiazol‐2‐yl]sulfanyl}butane)dicopper(I) bis(perchlorate)–dichloromethane–methanol (1/2/1), [Cu2(C26H20N6O2S2)2](ClO4)2·2CH2Cl2·CH3OH, (III). Under the control of the dumbbell‐shaped CF3SO3 anion, complex (I) forms a one‐dimensional chain and neighbouring chains form a spiral double chain. Under the control of the regular tetrahedron‐shaped BF4 and ClO4 anions, complexes (II) and (III) have been obtained as bimetallic rings, which further interact viaπ–π interactions to form two‐dimensional networks. The anions play a decisive role in determining the arrangement of these discrete molecular complexes in the solid state.  相似文献   

6.
Reaction of bis(pyrazol‐1‐yl)acetic acid with n‐Bu2SnO in a 1:1 molar ratio gives dimeric bis[dicarboxylatotetraorganodistannoxanes], {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 (Pz = pyrazol‐1‐yl or 3,5‐dimethylpyrazol‐1‐yl), which are characterized by IR and NMR (1H, 13C and 119Sn) spectra and elemental analyses. The X‐ray crystal structure analyses indicate that {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which each tin atom is situated in a distorted trigonal bipyramidal geometry. In addition, bis(3,5‐dimethylpyrazol‐1‐yl)acetic acid in the solid state forms a dimer through two intermolecular O? H···N hydrogen bonds. These organotin derivatives display low fungicide, insecticide and miticide activities, but display certain cytotoxicities for Hela cells in vitro. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Nano‐Zn‐[2‐boromophenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Zn‐2BSMP]Cl2) as a nanoparticle Schiff base complex and a catalyst was introduced for the solvent‐free synthesis of 4‐((2‐hydroxynaphthalen‐1‐yl)(aryl)methyl)‐5‐methyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐ones by the multicomponent condensation reaction of various aromatic aldehydes, β‐naphthol, ethyl acetoacetate, and phenyl hydrazine at room temperature.  相似文献   

8.
The self‐assembly of metal–polydentate ligands to give supramolecular tetrahedral complexes is of considerable current interest. A new ligand, 4‐benzyl‐2‐[1‐(2‐{[3‐(4‐benzylpyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}benzyl)‐1H‐pyrazol‐3‐yl]pyridine (L), with chelating pyrazolyl–pyridine units substituted on the 4‐position of the pyridyl ring with benzyl units, has been synthesized and fully characterized. The self‐assembly of L with cobalt(II) gave rise to a tetrahedral cage (hexakis{μ‐4‐benzyl‐2‐[1‐(2‐{[3‐(4‐benzylpyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]methyl}benzyl)‐1H‐pyrazol‐3‐yl]pyridine}perchloratotetracobalt(II) octakis(perchlorate) acetonitrile undecasolvate, [Co4(ClO4)(C38H32N6)6](ClO4)7·11CH3CN) with approximate T symmetry. The X‐ray crystal structure of the cage, i.e. [Co4L6ClO4](ClO4)7, shows that the substituted benzyl groups are oriented away from the centres of their respective ligands towards the CoII vertices, making small outward‐facing pockets from three benzyl rings at the corners of the tetrahedron.  相似文献   

9.
The Zn atom in dichloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)­methane]zinc(II), [ZnCl2(C11H16N4)], (I), is tetra­hedrally coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand and two terminal Cl atoms. The mol­ecule has no crystallographic symmetry. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazol­yl)methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to yield inter­molecular C—H⋯Cl contacts, thereby forming a one‐dimensional zigzag chain extending along the b axis. On the other hand, in di‐μ‐chloro‐bis­{chloro­[(3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane]cadmium(II)}, [Cd2Cl4(C11H16N4)2], (II), each of the two crystallographically equivalent Cd atoms is penta­coordinated by two N atoms from one bis­(3,5‐dimethyl­pyrazol­yl)methane ligand, and by one terminal and two bridging Cl anions. The mol­ecule has a crystallographic centre of symmetry located at the mid‐point of the Cd⋯Cd line. One H atom of the CH2 group of the bis­(3,5‐dimethyl­pyrazolyl)­methane ligand inter­acts with a Cl atom of an adjacent mol­ecule to produce pairwise inter­molecular C—H⋯Cl contacts, thereby affording chains of mol­ecules running along the c axis.  相似文献   

10.
The bulky bis(4,6‐t Bu‐benzoxazol‐2‐yl)methane ligand system enabled the synthesis of the water‐containing organometallic potassium complex [(18‐crown‐6)K{(4,6‐t Bu‐OCNC6H2)2CH}⋅H2O] ( 2 ), which is an unprecedented example of a water‐stable reactive organopotassium compound. Furthermore, 2 is a rare example of a bis(benzoxazol‐2‐yl)methanide ligand displaying solely O‐coordination to a metal ion. Compound 2 was fully characterized through its solid‐state structure. Furthermore, its behavior in solution was investigated by NMR titration DOSY experiments. These revealed full protonation of the complex only after seven days and the addition of 114 equivalents of water.  相似文献   

11.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

12.
The synthesis and characterization of the ditopic bis(pyrazol‐1‐yl)borate ligand Li2[p‐C6H4(B(C6F5)pz2)2] is reported (pz = pyrazol‐1‐yl). Compared to the corresponding t‐butyl derivative Li2[p‐C6H4(B(t‐Bu)pz2)2], the C6F5‐substituted scorpionate is significantly more stable towards hydrolysis. Reaction of Li2[p‐C6H4(B(C6F5)pz2)2] with two equivalents of MnCl2 leads to the formation of coordination polymers {(MnCl2)2(Li(THF)3)2[p‐C6H4(B(C6F5)pz2)2]} featuring penta‐coordinate MnII ions chelated by one bis(pyrazol‐1‐yl)borate fragment and further bonded to three chloride ions. Two of the three chloride ions are also coordinated to a neighbouring MnII ion; the third chloro ligand is shared between the MnII centre and a Li(THF)3 moiety.  相似文献   

13.
A series of Cu(II) compounds containing neutral multi‐dentate ligand [2,6‐diisopropylphenyl]‐bis[(1‐H‐pyrazol‐1‐yl)methyl]amine ( L1 ) and pyrazole dimethoxethyl ligand [(1‐H‐pyrazol‐1‐yl)methyl]‐bis(2‐methoxyethyl)amine ( L2 ) were synthesized. Reactions of L1 and L2 with copper(II) chloride generate L1CuCl2 ( 1 ) and L2CuCl2 ( 2 ), respectively. Compounds 1 and 2 have been characterized by elemental analysis and X‐ray single crystal diffractometry. The effects of compounds 1 and 2 on the cell viability of various human cancer cells (including A549, COLO 205, HT‐29, Hep3B, HepG2, Huh7, and PCL5 cells) were investigated. The results indicate that compound 2 has a strong inhibitory effect on cell growth in human colorectal carcinoma cells (COLO 205 cells and HT‐29 cells).  相似文献   

14.
Reactions of CuX (X=I, NCS) with bis(4‐benzyl‐3,5‐dimethyl‐1H‐pyrazol‐1‐yl)methane (bzdmpzm) in MeCN resulted in the formation of one dimer [(bzdmpzm)Cu(µ‐I)]2 ( 1 ) and one 1D polymer [(bzdmpzm)Cu(µ‐NCS)]n ( 2 ) in high yields. 1 and 2 were characterized by elemental analysis, IR, 1H NMR spectra, powder X‐ray diffraction and single‐crystal X‐ray diffraction. 1 consists of two scorpion‐like [(bzdmpzm)Cu]+ fragments bridged by two iodides, forming a dimeric structure. 2 contains a unique 1D scolopendra‐like chain of [(bzdmpzm)Cu]+ fragments linked by pairs of thiocyanates. The luminescence properties of 1 and 2 were also investigated.  相似文献   

15.
Reaction of the Grignard reagent with polydentate nitrogen‐donor ligands yields new species with rare magnesium coordination and possible catalytic activity. In the first of the title compounds, poly[[μ4‐dihydrobis(pyrazol‐1‐yl)borato‐κ2N,N′]potassium(I)], [K(C6H8BN4)]n, (I), polymeric chains form a two‐dimensional network in the [100] plane. Each potassium ion is coordinated by four N atoms of pyrazolyl ligands, while weak (μ‐BH)...K+ interactions additionally stabilize the structure. The K and B atoms both lie on a mirror plane. In three new structures obtained by disproportionation of the Grignard reagent, each Mg atom is bound to a κ2N,N′‐type ligand, forming the basal plane, and tetrahydrofuran molecules occupy the axial positions. Di‐μ‐chlorido‐bis[dihydridobis(pyrazol‐1‐yl)borato]tris(tetrahydrofuran)dimagnesium(II), [Mg2(C6H8BN4)2Cl2(C4H8O)3], (II), adopts a dimeric structure with μ‐Cl—Mg interactions. One of the Mg atoms has an octahedral coordination, while the other has a distorted square‐pyramidal environment. However, in the bis‐chelate compounds bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′](tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)], (III), and bis[dihydridobis(pyrazol‐1‐yl)borato‐κ2N,N′]bis(tetrahydrofuran‐κO)magnesium(II), [Mg(C6H8BN4)2(C4H8O)2], (IV), the Mg atoms have square‐pyramidal and octahedral environments, respectively. The Mg atom in (IV) lies on an inversion centre.  相似文献   

16.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

17.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

18.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

19.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

20.
A series of pyrazolo[4,3‐e]‐1,2,4‐triazolo‐[1,5‐c]pyrimidine derivatives, bearing phosphonylbenzyl chain in position 7, were conveniently synthesized in an attempt to obtain potent and selective antagonists for the A2A adenosine receptor or potent pesticide lead compounds. Diethyl[(5‐amino‐4‐cyano‐3‐methylsulfanyl‐pyrazol‐1‐yl)‐benzyl]phospho‐nate ( 3 ), which was prepared by the cyclization of diethyl 1‐hydrazinobenzylphosphonate ( 1 ) with 2‐[bis(methylthio)methylene]malononitrile ( 2 ), reacted with triethyl orthoformate to afford diethyl[(4‐cyano‐5‐ethoxymethyleneamino‐3‐methylsulfanyl‐pyrazol‐1‐yl)‐benzyl]phosphonate ( 4 ), which reacted with various acyl hydrazines in refluxing 2‐methoxyethanol to give the target compounds 5a–h in good yields. Their structures were confirmed by IR, 1H NMR, 13C NMR, MS, and elemental analysis. The crystal structure of 5e was determined by single crystal X‐ray diffraction © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:634–638, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20478  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号