首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research suggests the importance of mathematics knowledge for teaching (MKT) for enabling elementary school teachers to effectively teach mathematics. MKT involves both mathematical content knowledge (M‐CK) and mathematical pedagogical content knowledge (M‐PCK). However, there is no consensus on how best to prepare elementary preservice teachers (PSTs) to achieve M‐CK and M‐PCK. This study builds on research related to MKT by investigating influences of mathematics content courses designed specifically for elementary PSTs (IMPACT courses—Impact of Mathematics Pedagogy and Content on Teaching) on their attitudes (i.e., confidence and motivation) toward M‐CK and M‐PCK. Results suggest that the PSTs who participated in these IMPACT courses not only acquired high levels of confidence and motivation toward M‐CK, but also showed significant and greater gains in attitudes toward M‐PCK, after taking the required mathematics methods course, than their counterparts. Further, the findings suggest that these IMPACT courses provided a mathematical foundation that allowed the PSTs to engage in mathematics teaching methods better than those PSTs who did not have such a foundation. These results suggest potential course experiences that may enhance M‐CK and M‐PCK for elementary PSTs.  相似文献   

2.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

3.
This study examined preservice teachers' mathematics self‐efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self‐Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs Instrument (MTEBI), and the Illinois Certification Testing System (ICTS) Basic Skills Test. The results indicate that preservice teachers' mathematics self‐efficacy is positively correlated to their personal mathematics teaching efficacy. In addition, their mathematical performance is related to their mathematics self‐efficacy and mathematics teaching efficacy. In regard to affecting student outcomes, only those preservice teachers who are very confident in their ability to teach believe they can have an effect on their students. Implications on teacher education programs are discussed.  相似文献   

4.
Many K–8 preservice teachers have not experienced learning mathematics in a standards‐based classroom. This article describes a mathematics content course designed to provide preservice teachers experiences in learning mathematics that will help build a solid foundation for a standards‐based methods course. The content course focuses on developing preservice teachers' mathematical knowledge, as well as helping them realize what it means to learn mathematics that is taught using the pedagogy in the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Furthermore, findings are presented from a study on this course that describe students' pre‐ and postcourse beliefs, attitudes, and perceptions of what it means to learn and teach mathematics. These findings provide evidence that the students in the study are beginning to understand what is meant by a standards‐based classroom. Data were collected from surveys and interviews. Quotes from the students who aspire to be elementary teachers are used throughout the article to support the points.  相似文献   

5.
This study examines pre-service teachers’ points of view about learning history of mathematics during their undergraduate education. An open-ended questionnaire was administered to one hundred and twenty pre-service teachers, during the fall semester of the 2013–14 academic year. The participants indicated that learning history of mathematics could increase their content knowledge as they understand how formulas, theories and relations were developed over time. In addition, it could develop them intellectually as they learn life stories of mathematicians. Also, it could help them to hold the attention of students, and answer some of the why questions. Particularly, they reported using history of mathematics knowledge while teaching Geometry and Numbers.  相似文献   

6.
This mixed-methods study describes classroom characteristics and student outcomes from university mathematics courses that are based in mathematics departments, targeted to future pre-tertiary teachers, and taught with inquiry-based learning (IBL) approaches. The study focused on three two-term sequences taught at two research universities, separately targeting elementary and secondary pre-service teachers. Classroom observation established that the courses were taught with student-centred methods that were comparable to those used in IBL courses for students in mathematics-intensive fields at the same institutions. To measure pre-service teachers' gains in mathematical knowledge for teaching, we administered the Learning Mathematics for Teaching (LMT) instrument developed by Hill, Ball and Schilling for in-service teacher professional development. Results from the LMT show that pre-service teachers made significant score gains from beginning to end of their course, while data from interviews and from surveys of learning gains show that pre-service teachers viewed their gains as relevant to their future teaching work. Measured changes on pre-/post-surveys of attitudes and beliefs were generally supportive of learning mathematics but modest in magnitude. The study is distinctive in applying the LMT to document pre-service teachers' growth in mathematical knowledge for teaching. The study also suggests IBL is an approach well suited to mathematics departments seeking to strengthen their pre-service teacher preparation offerings in ways consistent with research-based recommendations.  相似文献   

7.
In this study, we examined 10 expert and 10 novice teachers' noticing of classroom events in China. It was found that both expert and novice teachers, who were selected from two cities in China, highly attended to developing students' mathematics knowledge coherently and developing students' mathematical thinking and ability; they also paid attention to students' self‐exploratory learning, students' participation, and teachers' instructional skills. Furthermore, compared with novice teachers, expert teachers paid greater attention to developing mathematical and high‐order thinking, and developing mathematics knowledge coherently, but paid less attention to teachers' guidance. Moreover, we further illustrated the qualitative differences and similarities in their noticing of classroom events. Finally, we discussed the findings and relevant implications.  相似文献   

8.
This study investigated preservice elementary teachers' achievement goal orientations for learning mathematics and the relationship of those goals to their attitudes toward mathematics. Self‐report instruments were administered to assess three achievement goals—mastery, performance‐approach, and performance‐avoid, and three constructs of attitude—confidence in learning mathematics, usefulness of mathematics, and mathematics as a male domain. The preservice teachers were higher in mastery goals than in performance goals, and performance‐avoid goals were higher than performance‐approach goals. Mastery goals correlated positively to all three constructs of attitude. Since mathematics classes are traditionally performance‐oriented, these results suggest a mismatch between personal and classroom goals that could result in negative attitudes and the adoption of maladaptive performance‐avoid goals. These findings suggest that mathematics content courses for preservice elementary teachers should be taught in a classroom climate that supports and encourages mastery goals.  相似文献   

9.
To make progress toward ambitious and equitable goals for students’ mathematical development, teachers need opportunities to develop specialized ways of knowing mathematics such as mathematical knowledge for teaching (MKT) for their work with students in the classroom. Professional learning communities (PLCs) are a common model used to support focused teacher collaboration and, in turn, foster teacher development, instructional improvement, and student outcomes. However, there is a lack of specificity in what is known about teachers’ work in PLCs and what teachers can gain from those experiences, despite broad claims of their benefit. We discuss an investigation of the work of secondary mathematics teachers in PLCs at two high schools to describe and explicate possible opportunities for teachers to develop the mathematical knowledge needed for the work of teaching and the ways in which these opportunities may be pursued or hindered. The findings show that, without pointed focus on mathematical content, opportunities to develop MKT can be rare, even among mathematics teachers. Two detailed images of teacher discussion are shared to highlight these claims. This article contributes to the ongoing discussion about the affordances and limitations of PLCs for mathematics teachers, considerations for their use, and how they can be supported.  相似文献   

10.
Teaching mathematics in university levels is one of the most important fields of research in the area of mathematics education. Nevertheless, there is little information about teaching knowledge of mathematics university teachers. Pedagogical content knowledge (PCK) provides a suitable framework to study knowledge of teachers. The purpose of this paper is to make explicit the perception of mathematics university teachers about PCK. For this purpose, a phenomenological study was done. Data resources included semi-structured interviews with 10 mathematics university teachers who were in different places of the mathematics university teaching experience spectrum. Data analysis indicated a model consisting of four cognitive themes which are mathematics syntactic knowledge, knowledge about mathematics curriculum planning, knowledge about students' mathematics learning and knowledge about creating an influential mathematics teaching–learning environment. Besides, it was found out that three contextual themes influenced on PCK for teaching mathematics in university levels which were the nature of mathematics subjects, university teachers' features and terms of learning environment.  相似文献   

11.
The purpose of this study was to examine the relationship between mathematics content knowledge and teacher efficacy during an elementary mathematics methods course. A positive moderate relationship between content knowledge and personal teaching efficacy was found, and this relationship was stable during the course. No relationship was found between content knowledge and outcome expectancy. Written artifacts were used to understand and elaborate on these findings. Those data suggest that prior learning experiences may help explain this relationship. Additionally, they suggest that preservice teachers with different levels of content knowledge may attend to different sources of information when making efficacy judgments about teaching.  相似文献   

12.
High‐quality after‐school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science‐related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content knowledge acquisition and attitudes toward science may aid in the development of effective science‐related interventions. We investigated the impact of a semester‐long after‐school intervention utilizing an inquiry‐based infectious diseases curriculum (designed for use after‐school) on 63 urban students' content knowledge and aspects of their attitudes toward science. Content knowledge increased 24.6% from pretest to posttest. Multiple regression analyses indicated suggested that the “self‐directed effort” subscale of the Simpson–Troost Attitude Questionnaire—Revised best predicted increases in students' science content knowledge. The construct “science is fun for me” served as a suppressor effect. These findings suggest that future after‐school programs focusing on aspects of attitudes toward science most closely associated with gains in content knowledge might improve students' enthusiasm and academic preparedness for additional science coursework by improving student attitudes toward their perceptions of their self‐directed effort.  相似文献   

13.
The study explored the impact of using video‐based pedagogy on preservice teachers' cognitions about teaching mathematics. The use of video‐based pedagogy was integrated into the course, Methods for Teaching Elementary School Mathematics. A variety of written and interview data were collected during the course and, in the following semester, during student teaching. Evidence from case studies of three preservice teachers indicates that they engaged in reflection and reconstruction of their beliefs about how children learn mathematics and moved from a more didactic perspective of teaching mathematics toward a student‐centered perspective. Such movement appears to have been influenced by the use of video‐based pedagogy.  相似文献   

14.
The purpose of this study was to further the understanding of how preservice teachers construct teacher knowledge and pedagogical content knowledge of elementary mathematics and science in a school‐based setting and the extent of knowledge construction. Evidence of knowledge construction (its acquisition, its dimensions, and the social context) was collected through the use of a qualitative methodology. The methods course was content‐specific with instruction in elementary mathematics and science. Learning experiences were based on national standards with a constructivist instructional approach and immediate access to field experiences. Analysis and synthesis of data revealed an extensive acquisition of teacher knowledge and pedagogical content knowledge. Learning venues were discovered to be the conduits of learning in a situated learning context. As in this study, content‐specific, school‐based experiences may afford preservice teachers greater opportunities to focus on content and instructional strategies at deeper levels; to address anxieties typically associated with the teaching of elementary mathematics and science; and to become more confident and competent teachers. Gains in positive attitudes and confidence in teaching mathematics and science were identified as direct results of this experience.  相似文献   

15.
This study explored how mathematics content and methods courses for preservice elementary and middle school teachers could be improved through the integration of a set of instructional materials based on the National Assessment of Educational Progress (NAEP). A set of eight instructional modules was developed and tested. The study involved 7 university instructors and 542 preservice teachers (PSTs) from three different universities. A quasi‐experimental nonequivalent groups design was used for this study in which the following data sources were collected and analyzed. Three versions of a Learning Mathematics for Teaching test were given to assess PSTs‘ mathematical content knowledge for teaching: (a) Elementary Number Concepts and Operations—Content Knowledge; (b) Elementary Geometry—Content Knowledge; and (c) Middle School Number Concepts and Operations—Content Knowledge. In addition, the Mathematics Teacher Efficacy Beliefs Instrument was given to assess PSTs’ teacher efficacy beliefs. Test results were analyzed using paired samples t‐tests. Findings suggest that use of instructional materials, based on NAEP, with PSTs results in increases in their mathematical content knowledge for teaching and in their teaching efficacy beliefs.  相似文献   

16.
This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers’ conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets – designed and used in an exploratory manner – promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.  相似文献   

17.
Computers, and computer‐related thinking structures, are only gradually influencing mathematics education. On the one hand, there is a discrepancy between involved teachers who already have changed their own classroom teaching to a great extent, and a majority of mathematics teachers who have not yet taken notice of the computer for teaching purposes. On the other hand, knowledge of the computer and of algorithms is frequently merely added to the mathematical subject matter. As opposed to that, the authors argue that it is necessary to genuinely integrate such subject matter, and to include general topics such as social impact and changed attitudes toward application. With regard to implementation, they develop concrete ideas which are aligned in a differentiated manner to the specific situation and the opportunities offered in the Federal Republic of Germany. The rationale for that is that only such reference to a specific situation will provide an opportunity for readers abroad to usefully apply approaches and ideas to the situation given in their own cultural environment.

An abbreviated version of this paper for cursory reading or other purposes has been marked by bold lines on the margin.

  相似文献   

18.
Representations of mathematical concepts play an important role in understanding: both in helping learners understand the to-be-learned material and in facilitating teachers’ understanding of pedagogical processes which, in turn, are involved in developing learners’ understanding. In this paper, we report on work with a cohort of pre-service primary teachers, with the aim of developing their understanding of mathematics, their confidence in their subject knowledge and their confidence in teaching mathematics. This was attempted through the introduction and use of a ‘representational approach’ to the teaching of the mathematical concepts required of teachers training to teach in primary schools in the UK. We present the results of attitude measures and a follow-up qualitative questionnaire in identifying whether and how the use of this representational approach supported pre-service teachers’ understanding and their confidence in teaching mathematics. The results suggest that the representational approach used had a positively significant impact on the attitudes towards studying and teaching mathematics.  相似文献   

19.
Heuristic training alone is not enough for developing one's mathematical thinking. One missing component is a mathematical point of view. This study reports findings regarding outcomes of a historical approach calculus course to foster Taiwanese college students' views of mathematical thinking. This study consisted of 3 stages. During the initial phase, 44 engineering majors' views on mathematical thinking were tabulated by an open-ended questionnaire, and 9 randomly selected students were invited to participate in follow-up interviews. Students then received an 18-week historical approach calculus course in which mathematical concepts were problematized to challenge their intuition-based empirical beliefs about doing mathematics. Near the end of the semester, all participants answered the identical questionnaire, and we interviewed the same students to pinpoint any shifts in their views on mathematical thinking. We found that participants were more likely to value logical sense, creativity, and imagination in doing mathematics. Further, students were leaning toward a conservative attitude toward certainty of mathematical knowledge. Participants' focus seemingly shifted from mathematics as a product to mathematics as a process.  相似文献   

20.
This paper discusses three alternative models for structuring homework assignments in college level mathematics. A distributive model which incorporates both early and late review of previously learned material into the daily assignment schedule is explicated in detail. The relative efficacy of the conventional method for assigning homework and the distributive method in promoting achievement and favourable attitudes toward mathematics in a first semester course in calculus was investigated in a controlled experiment. Significant (p < 0.03) interactions between mathematical ability and assignment model were found on three of four unit tests. In each case, pupils with the weaker pre‐calculus background profited more from the distributive assignment schedule. There were no significant interactions or differences on a comprehensive post‐test or on attitudes toward mathematics. Implications for research and practice in college level mathematics, physics, and engineering courses are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号