首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

2.
Chebyshev determined $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n + a_1 x^{n - 1} + \cdots + a_n |$$ as 21?n , which is attained when the polynomial is 21?n T n(x), whereT n(x) = cos(n arc cosx). Zolotarev's First Problem is to determine $$\mathop {\min }\limits_{(a)} \mathop {\max }\limits_{ - 1 \le x \le 1} |x^n - n\sigma x^{n - 1} + a_2 x^{n - 2} + \cdots + a_n |$$ as a function ofn and the parameter σ and to find the extremal polynomials. He solved this in 1878. Another discussion was given by Achieser in 1928, and another by Erdös and Szegö in 1942. The case when 0≤|σ|≤ tan2(π/2n) is quite simple, but that for |σ|> tan2(π/2n) is quite different and very complicated. We give two new versions of the proof and discuss the change in character of the solution. Both make use of the Equal Ripple Theorem.  相似文献   

3.
Изучаются ряды Риман а, рассматривавшиеся ранее в работах [1] и [2]. Пустьa n (n=1, 2,…) — последов ательность комплекс ных чисел иr n =a n +a 2n +. Предполо жим, чтоΣ¦a n ¦<∞. Тогда выпо лняются неравенства $$\begin{array}{*{20}c} {\sum\limits_n {\left| {r_n } \right| \leqq } \sum\limits_n {\left| {a_n } \right|} d(n),} & {\sum\limits_n {\left| {a_n } \right|} } \\ \end{array} \leqq \sum\limits_n {\left| {r_n } \right|2^{\omega (n)} ,} $$ гдеd(n) иω(n) — соответств енно число делителей и число простых делителейn. Е сли $$\begin{array}{*{20}c} {F(z) = \sum\limits_n {a_n z^n ,} } & {p_n (z) = \sum\limits_{s|n} {\mu \left( {\frac{n}{s}} \right)z^s ,} } \\ \end{array} $$ то \(F(z) = \sum\limits_n {r_n p_n (z)} \) для ¦z¦<1. В статье с одержатся некоторые результаты о сходимо сти рядов РиманаΣt n p n (z) на окружно сти ¦z¦=1. Например, если числаt n неотрицатель ны, монотонно убывают и \(\sum\limits_n {t_n< \infty } \) , то ряд равн омерно сходится для ¦z¦=1. Сформулированы неко торые новые задачи.  相似文献   

4.
The following inequalities are shown to hold for the least uniform rational deviations Rn(f) of a function f(x), continuous and convex in the interval [a, b]: $$R_n (f) \leqslant C(v)\Omega (f)n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n$$ (ν is an integer, C(ν) depends only on ν, and Ω(f) is the total oscillation of f); $$R_n (f) \leqslant C_1 n^{ - 1} \overbrace {\ln \ldots \ln }^{vtimes}n\mathop {\inf }\limits_{(b - a)\chi _n \leqslant \lambda< b - a} \left\{ {\omega (\lambda ,f) + M(f)n^{ - 1} \ln \frac{{b - a}}{\lambda }} \right\}$$ (ν is an integer, C1(ν) depends only on ν, xn = exp (-n/(500 In2n)), ω (δ,f) is the modulus of continuity of f, and M(f) = max¦f(x) ¦.  相似文献   

5.
For an arbitrary element x with spectrum sp(x) in a Banach algebra with identity e ≠ 0 we define the upper (lower) spectral abscissa \(\mathop {\sigma + (x)}\limits_{( - )} = \mathop {\max }\limits_{(\min )} \operatorname{Re} \lambda ,\lambda \in sp(x)\) . With the aid of the spectral radius \(\rho (x) = \mathop {\max }\limits_{\lambda \in sp(x)} \left| \lambda \right| = \mathop {\lim }\limits_{n \to + \infty } \parallel x^n {{1 - } \mathord{\left/ {\vphantom {{1 - } n}} \right. \kern-0em} n}\) we prove the following bounds: γ?(x)?σ?(x)?Γ?(x)?+(x)?σ+(x)?γ+(x), Γ(±)(x)=(2δ(±))?1 δ 2 )(±) (±) 2 0 2 )(δ(±)≠0), γ(±)(x)= (±)ρδ(±)?δ(±), δ+?0, δ??0 ρ (±) δ = ρ(x+eδ(±)). We mention a case where equality is achieved, some corollaries,and discuss the sharpness of the bounds: for every ? > 0 there is a δ: ¦δ¦ ≥ρ 0 2 /2?, such that Δ: = ¦γ(±) x(±) x¦?ε and conversely, if the bounds are computed for some δ ≠ 0, then △ ≤ρ 0 2 /2 ¦δ¦. An example is considered.  相似文献   

6.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

7.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

8.
LetW(x) be a function that is nonnegative inR, positive on a set of positive measure, and such that all power moments ofW 2 (x) are finite. Let {p n (W 2;x)} 0 denote the sequence of orthonormal polynomials with respect to the weightW 2, and let {α n } 1 and {β n } 1 denote the coefficients in the recurrence relation $$xp_n (W^2 ,x) = \alpha _{n + 1} p_{n + 1} (W^2 ,x) + \beta _n p_n (W^2 ,x) + \alpha _n p_{n - 1} (W^2 ,x).$$ We obtain a sufficient condition, involving mean approximation ofW ?1 by reciprocals of polynomials, for $$\mathop {\lim }\limits_{n \to \infty } {{\alpha _n } \mathord{\left/ {\vphantom {{\alpha _n } {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }} = \tfrac{1}{2}and\mathop {\lim }\limits_{n \to \infty } {{\beta _n } \mathord{\left/ {\vphantom {{\beta _n } {c_{n + 1} }}} \right. \kern-\nulldelimiterspace} {c_{n + 1} }} = 0,$$ wherec n 1 is a certain increasing sequence of positive numbers. In particular, we obtain a sufficient condition for Freud's conjecture associated with weights onR.  相似文献   

9.
In the present paper, we consider a preconditioning strategy for Finite Element (FE) matrix sequences {A n (a)} n discretizing the elliptic problem $$\left\{ \begin{gathered} A_a u \equiv ( - )^k \nabla ^k [a(x,y)\nabla ^k u(x,y)] = f(x,y),{ }(x,y) \in \Omega = (0,1)^2 , \hfill \\ \left. {\left( {\frac{{\partial ^s }}{{\partial v^s }}u(x,y)} \right)} \right|_{\partial \Omega } \equiv 0,{ }s = 0,...,k - 1,{ }^{^{^{^{^{^{(1)} } } } } } \hfill \\ \end{gathered} \right.$$ with a(x,y) being a uniformly positive function and ν denoting the unit outward normal direction. More precisely, in connection with preconditioned conjugate gradient (PCG) like methods, we define the preconditioning sequence: {P n (a)} n , P n (a):= $$\widetilde D$$ n 1/2(a)A n (1) $$\widetilde D$$ n 1/2(a), where $$\widetilde D$$ n (a) is the suitable scaled main diagonal of A n (a). In fact, under the mild assumption of Lebesgue integrability of a(x), the weak clustering at the unity of the corresponding preconditioned sequence is proved. Moreover, if a(x,y) is regular enough and if a uniform triangulation is considered, then the preconditioned sequence shows a strong clustering at the unity so that the sequence {P n (a)} n turns out to be a superlinear preconditioning sequence for {A n (a)} n . The computational interest is due to the fact that the computation with A n (a) is reduced to computations involving diagonals and two-level Toeplitz structures {A n (1)} n with banded pattern. Some numerical experimentations confirm the efficiency of the discussed proposal.  相似文献   

10.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

11.
В статье изучается по ведение суммы лакуна рного тригонометрическог о ряда при приближени и к некоторой фиксиров анной произвольной т очке. Первая половина рабо ты посвящена изложен ию метода исследования локаль ных свойств суммы лакунарного ря да, разработанного ав тором. Вторая половина рабо ты посвящена приложе ниям этого метода. Здесь в частно сти, получаются необходи мые и достаточные усл овия для интегрируемости сум мы лакунарного ряда с весом при широк их условиях на вес. При ведем соответствующий рез ультат. Пусть?р(x) — сумма ряда \(a + \sum\limits_{n = 1}^\infty {a_n \cos (\lambda _n x + \psi _n )} \) , гдеа, а n ,λ n ,ψ n — действительные числа,εa n /2 <∞,a n ≧0,λ n >0 приn≧1 и \(\mathop {\inf }\limits_{n \geqq 1} \lambda _{n + 1} /\lambda _n > 1\) . При этих условиях функция?(х) определена почти всю ду. Пустьр>0 иω(х) — положительная неуб ывающая функция, определенная при все хх>0, которая при некот оромC>0 удовлетворяет услов ию:ω(2x)≦ ≦Cω(х) при всехх>0. Тогда имеет место Теорема. Для того, чтоб ы интеграл \(\int\limits_{ + 0} {|\varphi (x)|^p \frac{{dx}}{{\omega (x)}}} \) сходился, необходимо и достато чно, чтобы сходились все р яды $$\begin{gathered} \sum\limits_{n = 1}^\infty {D_n (\sum\limits_{k = n}^\infty {a_k^2 } )^{p/2} ,} \sum\limits_{n = 2}^\infty {D_n |a_n + \sum\limits_{k = 1}^{n - 1} {a_k \cos } \psi _k |^p ,} \hfill \\ \sum\limits_{n = 2}^\infty {D_n (pj)|\sum\limits_{k = 1}^{n - 1} {a_k \lambda _k^j \cos (\psi _k + \pi j/2)} |^p ,} j = 1,2,..., \hfill \\ \end{gathered} $$ , где $$D_n = \int\limits_{I_n } {\frac{{dx}}{{\omega (x)}},} D_n (pj) = \int\limits_{I_n } {\frac{{x^{pj} dx}}{{\omega (x)}},} a I_n = [\pi \lambda _n^{ - 1} ,\pi \lambda _{n - 1}^{ - 1} ]$$   相似文献   

12.
ИжУЧАЕтсь кРИтИЧЕск Аь скОРОсть УБыВАНИь Дль РАжлИЧНых МЕтОДОВ сУ ММИРОВАНИь. пРОтОтИпОМ тАкИх РЕж УльтАтОВ ьВльЕтсь сл ЕДУУЩЕЕ УтВЕРжДЕНИЕ, ОтНОсьЩ ЕЕсь к МЕтОДУ сУММИРОВАНИ ь АБЕль: ЕслИ $$a_n = O(n^p ) \Pi pI x \to \infty $$ Дль НЕкОтОРОгОp И $$\sum {a_n e^{ - nx} = O(e^{ - \eta (x)/x} ) \Pi pI x \to + 0,} $$ пРИx→+0, гДЕ ФУНкцИьη УДОВлЕт ВОРьЕт УслОВИУ $$\mathop {\lim \sup }\limits_{x \to + 0} \eta (x) = \infty ,$$ тО кОЁФФИцИЕНтыa n РАВ Ны НУлУ Дль ВсЕхn. Мы пОкАжыВАЕМ, ЧтО пОД ОБНыИ РЕжУльтАт ИМЕЕ т МЕстО Дль шИРОкОгО клАссА МЕтОДОВ сУММИРОВАНИ ь.  相似文献   

13.
Let \(\Omega = \Omega _0 \backslash \bar \Omega _1\) be a regular annulus inR N and \(\phi :\bar \Omega \to R\) be a regular function such that φ=0 on ?Ω0, φ=1 on ?Ω1 and ▽φ ≠ 0. Let Kn be the subset of functions v ε W1,p (Ω) such that v=0 on ?Ω0, v=1 on ?Ω1, v=(unprescribed) constant on n given level surfaces of φ. We study the convergence of sequences of minimization problems of the type $$Inf\left\{ {\int\limits_\Omega {\frac{1}{{a_n \circ \phi }}G(x,(a_n \circ \phi )\nabla v)dx;v \in K_n } } \right\},$$ where an ε L (0,1) and G: (x, ζ) ε Ω × RN → G(x, ζ εR is convex with respect to ξ and verifies some standard growth conditions.  相似文献   

14.
Our main results are:
  1. Let α ≠ 0 be a real number. The function (Γ ? exp) α is convex on ${\mathbf{R}}$ if and only if $$\alpha \geq \max_{0<{t}<{x_0}}\Big(-\frac{1}{t\psi(t)} - \frac{\psi'(t)}{\psi(t)^2}\Big) = 0.0258... .$$ Here, x 0 = 1.4616... denotes the only positive zero of ${\psi = \Gamma'/\Gamma}$ .
  1. Assume that a function f: (0, ∞) → (0, ∞) is bounded from above on a set of positive Lebesgue measure (or on a set of the second category with the Baire property) and satisfies $$f(x+1) = x f(x) \quad{\rm for}\quad{x > 0}\quad{\rm and}\quad{f(1) = 1}.$$
If there are a number b and a sequence of positive real numbers (a n ) ${(n \in \mathbf{N})}$ with ${{\rm lim}_{n\to\infty} a_n =0}$ such that for every n the function ${(f \circ {\rm exp})^{a_n}}$ is Jensen convex on (b, ∞), then f is the gamma function.  相似文献   

15.
Let ${\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)}$ with the non-negative potential V belonging to reverse H?lder class with respect to the measure ??(x)dx, where ??(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying ${\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. }$ We obtain some estimates for ${V^{\alpha}\mathcal{L}^{-\alpha}}$ on the weighted L p spaces and we study the weighted L p boundedness of the commutator ${[b, V^{\alpha} \mathcal{L}^{-\alpha}]}$ when ${b\in BMO_\omega}$ and 0?<??? ?? 1.  相似文献   

16.
In this paper we consider the following Dirichlet problem for elliptic systems: $$\begin{array}{*{20}c} {\overline {DA\left( {x,u\left( x \right),Du\left( x \right)} \right)} = B\left( {x,u\left( x \right),Du\left( x \right)} \right), x \in \Omega ,} \\ {u\left( x \right) = 0, x\partial \Omega } \\ \end{array}$$ where D is a Dirac operator in Euclidean space, u(x) is defined in a bounded Lipschitz domain Ω in ? n and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space W 0 1,p(x) (Ω,C? n ) under appropriate assumptions.  相似文献   

17.
Let n≥4 be even, p > (n2?2n)/2 be simple odd, andf(x)=a 0+a 1+...+a nxn be a polynomial with integral coefficients that are not quadratic over the residue field modulo p, (a n, p)=1. The following inequality is proved: $$\left| {\sum\nolimits_{x = 1}^p {\left( {\frac{{f(x)}}{p}} \right)} } \right| \leqslant (n - 2)\sqrt {p + 1 - \frac{{n(n - 4)}}{4}} + 1.$$   相似文献   

18.
In this paper some basis properties are proved for the series with respect to the Franklin system, which are analogous to those of the series with respect to the Haar system. In particular, the following statements hold:
  1. The Franklin series \(\mathop \Sigma \limits_{n = 0}^\infty a_n f_n (x)\) converges a.e. onE if and only if \(\mathop \Sigma \limits_{n = 0}^\infty a_n^2 f_n^2 (x)< + \infty \) a.e. onE;
  2. If the series \(\mathop \Sigma \limits_{n = 0}^\infty a_n f_n (x)\) , with coefficients ¦a n ¦↓0, converges on a set of positive measure, then it is the Fourier-Franklin series of some function from \(\bigcap\limits_{p< \infty } {L_p } \) ;
  3. The absolute convergence at a point for Fourier—Franklin series is a local property;
  4. If an integrable function (fx) has a discontinuity of the first kind atx=x 0, then its Fourier-Franklin series diverges atx=x 0.
  相似文献   

19.
We consider the following anisotropic sinh-Poisson equation $${\rm div} (a(x) \nabla u)+ 2\varepsilon^2 a(x) {\rm sinh}\,u=0\ \ {\rm in}\ \Omega, \quad u=0 \ \ {\rm on}\ \partial \Omega,$$ where ${\Omega \subset \mathbb{R}^2}$ is a bounded smooth domain and a(x) is a positive smooth function. We investigate the effect of anisotropic coefficient ${a(x)}$ on the existence of bubbling solutions. We show that there exists a family of solutions u ?? concentrating positively and negatively at ${\bar{x}}$ , a given local critical point of a(x), for ?? sufficiently small, for which with the property $$2\varepsilon^2a(x){\rm sinh} u_\varepsilon \rightharpoonup 8\pi\sum\limits_{j=1}^{m}b_j\delta_{\bar{x}},$$ where ${b_j=\pm 1}$ . This result shows a striking difference with the isotropic case (a(x) ?? Constant) in Bartolucci and Pistoia (IMA J Appl Math 72(6):706?C729, 2007), Jost et?al. (Calc Var Partial Differ Equ 31:263?C276, 2008) and Esposito and Wei (Calc Var Partial Differ Equ 34:341?C375, 2009).  相似文献   

20.
The purpose of this paper is to prove that for a large set of absolute Hausdorff and quasi-Hausdorff methods the condition $$\sum\limits_{k = 1}^\infty {\left| {\lambda _n a_n - \lambda _{n - 1} a_{n - 1} } \right|< } \infty $$ is a Tauberian condition, i.e., its fulfillment together with the absolute summability of \(\sum\limits_{n = 0}^\infty {a_n } \) tos implies that \(\sum\limits_{n = 0}^\infty {\left| {a_n } \right|}< \infty \) and \(\sum\limits_{n = 0}^\infty {a_n } = s.\) a n =s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号