首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

2.
The application of the displacement discontinuity numerical technique to the solution of some problems of fracture mechanics is demonstrated in the hypothesis of homogeneous and elastic material. The fracture is supposed to be free from traction and is represented by a set of constant displacement discontinuity elements, except for two parabolic elements, located at each crack tip, in order to simulate the singularity of the solution near the crack tips. On the basis of the stress and displacement field determined by the displacement discontinuity method, the stress intensity factors for mode I and II are computed according to the method of the displacements. Three examples are provided to verify the validity of the formulation.
Sommario Lo scopo del presente lavore è di illustrare l'applicazione del metodo numerico della Displacement Discontinuity alla soluzione di alcuni problemi di meccanica della frattura, nell'ipotesi di materiale omogeneo ed elastico. La frattura è supposta aperta ed è rappresentata da una linea di elementi a discontinuità di spostamento costante, con l'eccezione di due speciali elementi parabolici, ubicati agli apici, al fine di simulare la singolarita' del campo tensionale. Sulla base del campo degli sforzi e degli spostamenti cosi determinati, vengono ricavati i fattori di concentrazione degli sforzi in modo I e II mediante il metodo degli spostamenti. Vengono inoltre riportati tre esempi di calcolo, effettuati al fine di verificare la validità del procedimento proposto.
  相似文献   

3.
In this paper, a numerical analysis of perpendicular cracks under general in-plane loading is performed by using a hybrid displacement discontinuity method which consists of the non-singular displacement discontinuity element presented by Crouch and Starfied and the crack tip displacement discontinuity elements by the author. In the boundary element implementation the left or the right crack tip displacement discontinuity element is placed locally at corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundary. The present numerical results show that the numerical approach is simple, yet very accurate for calculating numerically stress intensity factors for perpendicular cracks under general in-plane loading.  相似文献   

4.
Based on the extended Stroh formalism, we first derive the extended Green’s functions for an extended dislocation and displacement discontinuity located at the interface of a piezoelectric bi-material. These include Green’s functions of the extended dislocation, displacement discontinuities within a finite interval and the concentrated displacement discontinuities, all on the interface. The Green’s functions are then applied to obtain the integro-differential equation governing the interfacial crack. To eliminate the oscillating singularities associated with the delta function in the Green’s functions, we represent the delta function in terms of the Gaussian distribution function. In so doing, the integro-differential equation is reduced to a standard integral equation for the interfacial crack problem in piezoelectric bi-material with the extended displacement discontinuities being the unknowns. A simple numerical approach is also proposed to solve the integral equation for the displacement discontinuities, along with the asymptotic expressions of the extended intensity factors and J-integral in terms of the discontinuities near the crack tip. In numerical examples, the effect of the Gaussian parameter on the numerical results is discussed, and the influence of different extended loadings on the interfacial crack behaviors is further investigated.  相似文献   

5.
Stress intensity factors are important in the analysis of cracked materials. They are directly related to the fracture propagation and fatigue crack growth criteria. Based on the analytical solution (Crouch, S.L., 1976. Solution of plane elasticity problems by displacement discontinuity method, Int. J. Numer. Methods Eng. 10, pp. 301–343; Crouch, S.L., Starfield, A.M., 1983. Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics, London, Geore Allon and Unwin, Bonton, Sydney) to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid, recently, the crack-tip displacement discontinuity element which can be classified as the left and right crack-tip displacement discontinuity elements are developed by the author Yan, X., (in press. A special crack-tip displacement discontinuity element, Mechanics Research Communications) to model the crack-tip fields to more accurately compute the stress intensity factors of cracks in general plane elasticity. In the boundary element implementation the left or the right crack-tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. To prove further the efficiency of the suggested approach and provide more results of the stress intensity factors, in this study, analysis of an asymmetric branched crack bifurcated from a main crack in plane extension is carried out.  相似文献   

6.
本文由Reissner型板的不连续位移基本解,根据Betti互换定理,导出了Reissuer型板的不连续位移边界积分方程;结合平面问题的不连续位移边界积分方程─—边界元方法和线弹簧模型,给出了Rrissner型板表面裂纹应力强度因子的线弹簧-不连续位移边界积分方程解法。  相似文献   

7.
A modified formulation of the complex variable displacement method in plane isotropic elasticity is presented. It makes use of two equations deduced from the planar Navier equations in terms of the complex variable, which differs from England’s original formulation based on only one equation. This formulation is more direct and complements the one by England.  相似文献   

8.
闫相桥 《力学学报》2004,36(5):604-610
提出了平面弹性介质中多孔洞多裂纹相互作用问题的一种数值计算方 法. 通过把适于单一裂纹的Bueckner原理扩充到含有多孔洞多裂纹的一般体系,将原问题 分解为承受远处载荷不含裂纹不含孔洞的均匀问题,和在远处不承受载荷但在裂纹面上和孔 洞表面上承受面力的多孔洞多裂纹问题. 于是,以应力强度因子作为参量的问题可以通过考 虑后者(多孔洞多裂纹问题)来解决,而利用提出的杂交位移不连续法,这种多孔 洞多裂纹问题是容易数值求解的. 算例说明该数值方法对分析平面弹性介质中多孔洞多裂纹 相互作用的问题既简单又有效.  相似文献   

9.
High interfacial stresses at the free edges of adherends are responsible for the debonding failure of adhesively bonded joints (ABJs). In this paper, a general stress-function variational method is formulated to determinate the interfacial shear and normal (peeling) stresses in ABJs in high accuracy. By extending authors’ prior work in stress analysis of bonded joints (Wu and Jenson, 2011), all the planar stress components in the adherends and adhesive layer of an ABJ are expressed in terms of four unknown interfacial stress functions, which are introduced at the upper and lower surfaces of the adhesive layer. A set of governing ordinary differential equations (ODEs) of the four interfacial stress functions is obtained via minimizing the complimentary strain energy of the ABJ, which is further solved by using eigenfunctions. The obtained semi-analytic stress field can satisfy all the traction boundary conditions (BCs) of the ABJ, especially the stress continuity across the bonding lines and the shear-free condition at the ends of adherends and adhesive layer. As an example, the stress field in an adhesively single-sided strap joint is determined by the present method, whose numerical accuracy and reliability are validated by finite element method (FEM) and compared to existing models in the literature. Parameter studies are performed to examine the dependencies of the interfacial stresses of the exemplified ABJ upon the geometries, moduli and temperature change of the adherends and adhesive layer, respectively. The present method is applicable for scaling analysis of joint strength, optimal design of ABJs, etc.  相似文献   

10.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

11.
The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is estab-lished to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM). The convergent stresses have good agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kan-torovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.  相似文献   

12.
在无单元伽辽金法(EFG)里,由于其滑动最小二乘近似位移函数不满足Kronecker条件,使得它不能准确地施加本质边界条件和材料不连续条件,从而极大地限制了EFG法的发展和进一步应用。本文在位移边界和不同材料交界面的离散结点上采用实际的结点位移值,提出了一种准确施加位移边界和材料不连续条件的方法,该方法实施简单、稳定、求解精度高,而且其推导得出的整体刚度矩阵具有正定、对称和带状分布的特点,可以和有限单元法一样,直接利用各种成熟、高效的线性方程组解法求解系统平衡方程。数值算例结果表明了文中理论和方法的正确性和可靠性。  相似文献   

13.
Mechanism of quasi-static crack branching in brittle solids has been analyzed by a modified displacement discontinuity method. It has been assumed that the pre-existing cracks in brittle solids may propagate at the crack tips due to the initiation and propagation of the kink (or wing) cracks. The originated wing cracks will act as new cracks and can be further propagated from their tips according to the linear elastic fracture mechanics (LEFM) theory. The kink displacement discontinuity formulations (considering the linear and quadratic interpolation functions) are specially developed to calculate the displacement discontinuities for the left and right sides of a kink point so that the first and second mode kink stress intensity factors can be estimated. The crack tips are also treated by boundary displacement collocation technique considering the singularity variation of the displacements and stresses near the crack tip. The propagating direction of the secondary cracks can be predicted by using the maximum tangential stress criterion. An iterative algorithm is used to predict the crack propagating path assuming an incremental increase of the crack length in the predicted direction (straight and curved cracks have been treated). The same approach has been used for estimating the crack propagating direction and path of the original and wing cracks considering the special crack tip elements. Some example problems are numerically solved assuming quasi-static conditions. These results are compared with the corresponding experimental and numerical results given in the literature. This comparison validates the accuracy and applicability of the proposed method.  相似文献   

14.
A finite element discretized symplectic method is introduced to find the thermal stress intensity factors (TSIFs) under steady-state thermal loading by symplectic expansion. The cracked body is modeled by the conventional finite elements and divided into two regions: near and far fields. In the near field, Hamiltonian systems are established for the heat conduction and thermoelasticity problems respectively. Closed form temperature and displacement functions are expressed by symplectic eigen-solutions in polar coordinates. Combined with the analytic symplectic series and the classical finite elements for arbitrary boundary conditions, the main unknowns are no longer the nodal temperature and displacements but are the coefficients of the symplectic series after matrix transformation. The TSIFs, temperatures, displacements and stresses at the singular region are obtained simultaneously without any post-processing. A number of numerical examples as well as convergence studies are given and are found to be in good agreement with the existing solutions.  相似文献   

15.
The vanishing of Riemann-Christoffel tensor is usually adopt-ed as the compatibility condition of finite deformation.However,we prove in this paper by the method of Cesaro that this condition is necessary but not sufficient for guarantee of a single-valued,continuous displacement field.A new general compatibility condi-tion,based on the theorem of strain-rotation decomposition(Chen[4])is derived.The displacement compatible condition reduces to Saint-Venant's condition when strain and rotation are infinitesimal.  相似文献   

16.
求解混合型裂纹应力强度因子的围线积分法   总被引:5,自引:0,他引:5  
本文用复变函数理论推导出裂纹的辅助场,并用Betti功互等定理给出求解混合型裂纹应力强度因子的远场围绕积分法.此方法与积分路径的选择无关,用有限元法计算出远离裂纹尖端的位移场和应力场,就可通过计算绕裂端的围线积分,精确地给出混合型裂纹的应力强度因子KⅠ和KⅡ的数值解.  相似文献   

17.
钢丝裂纹应力强度因子是进行钢丝疲劳断裂寿命评估、疲劳裂纹扩展分析和钢丝断裂强度评估等工作的重要参数。本文首先介绍了裂纹扩展分析软件FRANC3D,然后基于子模型法模拟研究了拉伸荷载作用下带有表面裂纹钢丝的应力强度因子,裂纹种类包括直线形裂纹和半圆形裂纹,最后拟合得到拉伸荷载作用下带表面裂纹钢丝的应力强度因子形状修正系数表达式,分析了利用该公式进行承载力评估时产生误差的原因。研究结果表明,利用子模型模拟分析拉伸荷载作用下带有表面裂纹的钢丝应力强度因子时计算精度高,计算速度快,对计算机硬件要求低;利用该方法得到的钢丝裂纹应力强度因子,在进行索承式桥梁吊索安全性能评估时,评估结果更精确。  相似文献   

18.
陆洋春  张建铭 《应用力学学报》2020,(1):168-175,I0011,I0012
传统有限元法由于采用低阶插值计算应力强度因子时,需要划分的网格数较多,收敛速度较慢,得到的应力强度因子精度不足。p型有限元法在网格确定时通过增加插值多项式的阶数来提高计算精度,具有网格划分少、收敛速度快、精度高、自适应能力强等特点。本文采用基于p型有限元法的有限元计算软件StressCheck计算得到应力场和位移场,并由围线积分法导出混合型应力强度因子(SIFs)。通过几个经典算例,分析了围线的选择对计算精度的影响,计算了不同裂纹长度、不同裂纹角度和裂纹在应力集中区域不同位置时的应力强度因子。并将数值结果、理论解与文献中其他数值计算方法所得的部分结果进行了对比分析,结果表明自由度数不大于7000时,导出的应力强度因子相对误差最大不超过1.2%,数值解表现出较高的精度及数值稳定性。  相似文献   

19.
A numerical method was developed for flows involving an interface between a homogenous fluid and a porous medium. The numerical method is based on the finite volume method with body‐fitted and multi‐block grids. A generalized model, which includes Brinkman term, Forcheimmer term and non‐linear convective term, was used to govern the flow in the porous medium region. At its interface, a shear stress jump that includes the inertial effect was imposed, together with a continuity of normal stress. Furthermore, the effect of the jump condition on the diffusive flux was considered, additional to that on the convective part which has been usually considered. Numerical results of three flow configurations are presented. The method is suitable for coupled problems with regions of homogeneous fluid and porous medium, which have complex geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The paper describes a hybrid experimental and numerical method of Moiré Interferometry and the boundary-integral-element method. The interference patterns used for the evaluation of the displacement vector are obtained by Moiré Interferometry. The boundary displacements obtained experimentally are conveniently used for the calculation of the stress intensity factor in the body by the boundary-integral-method. Some examples bear witness to the effectiveness and accuracy of the hybrid technique. Project is supported by the Science Fundation of the State Education Commission of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号