首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin.  相似文献   

2.
In grass cell walls, ferulic acid esters linked to arabinosyl residues in arabinoxylans play a key role in crosslinking hemicellulose. Although such crosslinks have a number of important roles in the cell wall, they also hinder the rate and extent of cell wall degradation by ruminant microbes and by fungal glycohydrolyase enzymes. Ferulic acid esterase (FAE) can release both monomeric and dimeric ferulic acids from arabinoxylans making the cell wall more susceptible to further enzymatic attack. Transgenic plants of Lolium multiflorum expressing a ferulic acid esterase gene from Aspergillus niger, targeted to the vacuole under a constitutive rice actin promoter, have been produced following microprojectile bombardment of embryogenic cell cultures. The level of FAE activity was found to vary with leaf age and was highest in young leaves. FAE expression resulted in the release of monomeric and dimeric ferulic acids from cell walls on cell death and this was enhanced severalfold by the addition of exogenous β-1,4-endoxylanase. We also show that a number of plants expressing FAE had reduced levels of cell wall esterified monomeric and dimeric ferulates and increased in vitro dry-matter digestibility compared with nontransformed plants.  相似文献   

3.
4-Vinyl guaiacol (3-methoxy 4-hydroxystyrene) can be obtained by decarboxylation of ferulic acid by the strain Streptomyces setonii ATCC 39116. The formation of this metabolite was favoured by microaerobic conditions and the culture medium employed, increasing progressively the product concentration from 543.3 up to 885.1 mg/l when aeration level was diminished, reaching a highest volumetric productivity of 70.4 mg/l h and a product yield of 1.11 mol/mol. The identity of the metabolite was confirmed by gas chromatography–mass spectrometry. A metabolic study of ferulic acid and the main degradation products (ferulic acid, 4-vinyl guaiacol, protocatechuic acid, vanillyl alcohol, vanillic acid and vanillin) suggested that ferulic acid was the only substrate capable to be transformed into 4-vinyl guaiacol by this strain of S. setonii.  相似文献   

4.
The filamentous fungi Trichoderma reesei and Penicillium funiculosum produce highly effective enzyme mixtures that degrade the cellulose and hemicellulose components of plant cell walls. Many fungal species produce a glycoside hydrolase family 7 (Cel7A) cellobiohydrolase, a class of enzymes that catalytically process from the reducing end of cellulose. A direct amino acid comparison of these two enzymes shows that they not only have high amino acid homology, but also contain analogous N-linked glycosylation sites on the catalytic domain. We have previously shown (Jeoh et al. in Biotechnol Biofuels, 1:10, 2008) that expression of T. reesei cellobiohydrolase I in a commonly used industrial expression host, Aspergillus niger var. awamori, results in an increase in the amount of N-linked glycosylation of the enzyme, which negatively affects crystalline cellulose degradation activity as well as thermal stability. This complementary study examines the significance of individual N-linked glycans on the surface of the catalytic domain of Cel7A cellobiohydrolases from T. reesei and P. funiculosum by genetically adding or removing N-linked glycosylation motifs using site directed mutagenesis. Modified enzymes, expressed in A. niger var. awamori, were tested for activity and thermal stability. It was concluded that N-linked glycans in peptide loops that form part of the active site tunnel have the greatest impact on both thermal stability and enzymatic activity on crystalline cellulose for both the T. reesei and P. funiculosum Cel7A enzymes. Specifically, for the Cel7A T. reesei enzyme expressed in A. niger var. awamori, removal of the N384 glycosylation site yields a mutant with 70% greater activity after 120 h compared to the heterologously expressed wild type T. reesei enzyme. In addition, similar activity improvements were found to be associated with the addition of a new glycosylation motif at N194 in P. funiculosum. This mutant also exhibits 70% greater activity after 120 h compared to the wild type P. funiculosum enzyme expressed in A. niger var. awamori. Overall, this study demonstrates that “tuning” enzyme glycosylation for expression from heterologous expression hosts is essential for generating engineered enzymes with optimal stability and activity.  相似文献   

5.
Accumulation of phenolic compounds in cell walls of different plant organs leading to increased lignification is an early defence response of plants against biotic stress. The aim of this work was to delineate occurrence of cell wall-bound (CWB) phenolic compounds in Morinda citrifolia leaves. Alkaline hydrolysis of the cell wall material of leaf tissues yielded 4-coumaric acid (4-CA) as the major bulk of the phenolic compounds in all Morinda germplasms. Next in line was 4-hydroxybenzoic acid. Other phenolics identified were vanillic acid, 4-hydroxybenzaldehyde, vanillin and ferulic acid. Concentrations of all the CWB phenolics were highest in the germplasm CHN-5, followed by the germplasm CHN-1. Incidentally, these two Morinda germplasms recorded lowest incidence of foliar diseases. Significantly higher amounts of 4-CA in combination with other phenolics may be the reasons for lowest incidence of foliar diseases in CHN-5 and CHN-1 germplasms of M. citrifolia.  相似文献   

6.
A disposable electrochemical sensor was developed for the detection of vanillin in vanilla extracts and in commercial products. An analytical procedure based on square-wave voltammetry (SWV) was optimised and a detection limit of 0.4 μM for vanillin was found. A relative standard deviation of 2% was calculated for a vanillin concentration of 100 μM. The method was applied to the determination of vanillin in natural concentrated vanilla extracts and in final products such as yoghurt and compote. The obtained results were compared with those provided by a reference method based on HPLC. The electrochemical behaviour of other compounds (vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, etc.), generally present in natural oleoresins, were also studied, to check for interferences with respect to the vanillin voltammetric signal.  相似文献   

7.
Aspergillus niger NRRL3 was cultivated in a moist wheat bran and ground corncob solid medium supplemented with inorganic minerals for the production of cellobiase (β-1,4-glucosidase, EC 3.2.1.21). With this method, A. niger NRRL3 was able to produce a high concentration of cellobiase (215 IU/gofsolid substrate) after 96 h of incubation. Temperature and moisture content affected final cellobiase titers. The best conditions for cell obiase production from solid substrate by A. niger NRRL3 were determined to be 70% moisture and 35°C.  相似文献   

8.
Corn (Zea mays L.) fiber, which is the seed coat and residual endosperm left after grain processing, is a low-value residue that contains carbohydrates and aromatic compounds that could provide value-added coproducts. Treatment of corn fiber with NaOH and assessment by gas chromatography indicated a prevalence of ferulic acid, with about 90% ester-linked in the cell walls. p-Coumaric acid was much lower at about 10% of the amount of ferulic acid. Histochemical reactions employing acid phloroglucinol and diazotized sulfanilic acid indicated the presence of phenolic acids in cell walls of the pericarp and aleurone layer. Various protocols were tested using milled corn fiber and pretreatment with commercial ferulic acid esterases before cellulase treatment, and dry weight loss and sugars and phenolic acids released into the filtrate were evaluated. Ferulic acid esterases effectively degraded corn fiber and released substantial amounts of ferulic acid and sugars (e.g., glucose and xylose) in the incubation medium. Light microscopy showed that ferulic acid esterase substantially disrupted the aleurone layer but caused little visible damage to the lignified pericarp cell walls. Amounts of compounds released varied with protocols, and one study with various milling methods showed that esterase pretreatment followed by cellulase released about 2.8 to 4.4 and 1.5 to 2.9 times more ferulic acid and glucose, respectively, than cellulase alone. The highest levels for one lot of corn fiber with esterase pretreatment followed by cellulase were 3.9 and 218 mg/g of ferulic acid and glucose, respectively.  相似文献   

9.
Two new phenolic compounds, 4-O-β-D-(6-O-gentisoylglucopyranosyl) vanillic acid (1), 2-O-β-D-(6-O-gentisoylglucopyranosyl) gentisic acid (2), together with three known compounds, vanillic acid (3), syringic acid (4), and gentisic acid (5), were isolated from the whole part of Stenoloma chusanum (L.) Ching. Structures of the two new compounds 1, 2 were elucidated on the basis of spectroscopic methods, including twodimensional NMR techniques and HR ESI-MS analysis. The compounds′ activities against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, Epidermophyton floccosum, and Aspergillus niger were determined, and the minimal inhibitory concentrations (MIC) were 25–100 μg/mL. Published in Khimiya Prirodnykh Soedinenii, No. 2, pp. 161–164, March–April, 2009.  相似文献   

10.
This article reports the production of high levels of l-asparaginase from a new isolate of Aspergillus niger in solid state fermentation (SSF) using agrowastes from three leguminous crops (bran of Cajanus cajan, Phaseolus mungo, and Glycine max). When used as the sole source for growth in SSF, bran of G. max showed maximum enzyme production followed by that of P. mungo and C. cajan. A 96-h fermentation time under aerobic condition with moisture content of 70%, 30 min of cooking time and 1205–1405 μ range of particle size in SSF appeared optimal for enzyme production. Enzyme yield was maximum (40.9±3.35 U/g of dry substrate) at pH 6.5 and temperature 30±2°C. The optimum temperature and pH for enzyme activity were 40°C and 6.5, respectively. The study suggests that choosing an appropriate substrate when coupled with process level optimization improves enzyme production markedly. Developing an asparaginase production process based on bran of G. max as a substrate in SSF is economically attractive as it is a cheap and readily available raw material in agriculture-based countries.  相似文献   

11.
Summary The application of HPLC with an electrochemical detector for the determination of phenolics in lignocellulosic materials is reported. The separation of phenolic acids and aldehydes (gallic acid, p-hydroxybenzoic acid, vanillic acid, p-coumaric acid, syringic acid, ferulic acid, vanillin, syringaldehyde and p-hydroxybenzaldehyde) on two different columns (reversed phase C6 and styrene-divinylbenzene PLRP-S) is shown. Chromatograms of phenolic compounds in neutral, basic and oxidative extracts of wheat straw treated with NaOH and white rot fungusStropharia rugosoannulata are reported along with quantitative results.  相似文献   

12.
Four new phenolic dimers and trimers that contain ferulic acid moieties were isolated from the alkaline hydrolyzate of insoluble maize bran fiber and their structures were established by 1D/2D NMR and mass spectrometry. The biological role of one dimer remains unclear whereas the dimeric vanillin-ferulic acid-cross-product probably represents an oxidative degradation product from the corresponding diferulate. Both ferulic acid dehydrotrimers are able to cross-link polysaccharide chains. However, the 5-5/8-O-4(H2O)-triferulic acid may be a cross-link in its identified structure whereas we assume that the identified 8-O-4/8-5(non-cyclic)-triferulic acid arose from a natural 8-O-4/8-5(cyclic)-triferulate analog during the saponification process.  相似文献   

13.
This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible.  相似文献   

14.
Approaching the end of the second decade of the 21st century, almost the whole demand of vanillin is met by the synthetic product obtained either via a petrochemical process starting from phenol and glyoxylic acid or from energy intensive alkaline oxidative depolymerization of lignin. Only a minor fraction is comprised of natural vanillin obtained from ferulic acid fermentation, and even less of highly valued Vanilla planifolia extracts. Are there alternative green production methods? And, if yes, are they suitable to find practical application?  相似文献   

15.
A seven-step synthesis of (2E,4E)-5-[4-hydroxy-3-methoxyphenyl]penta-2,4-dienoic acid from ferulic acid was developed. The use of a natural by-product found in rice bran as a raw material provided the ferulic acid vinylogous in an overall high yield. This compound will be useful for the preparation of a wide variety of avenalumic carboxamide derivatives.  相似文献   

16.
Conidia of Aspergillus niger were immobilized in calcium alginate gel for the production of citric acid. First, the type of the preactivation medium, together with the preactivation period, was investigated. It was found that A. niger requires a 2-d preactivation period at a 0.05 g/L NH4NO3 concentration. Second, preactivated cells were used to determine the effects of nitrogen concentration and the flow rate of oxygen and air on the production of citric acid. Maximum citric acid production was attained with medium containing 0.01 g/L of NH4NO3. The rate of citric acid production in the nitrogenous medium was 33% higher when oxygen was used instead of air during the production phase. This corresponds to an increase of 85% when compared to production when neither oxygen nor air was fed into the system. In the nonnitrogenous medium citric acid concentration remained similar regardless of the use of air or oxygen. However, in the nonnitrogenous production medium, citric acid production was not influenced considerably when oxygen was used instead of air. The advantage of using immobilized cells is that production is achieved easily in the continuous system. Therefore, citric acid production was also tested using a packed-bed bioreactor, and an increase in productivity by a factor of 22 was achieved compared to the batch system.  相似文献   

17.
A novel, simple, one‐step method of synthesizing vanillin and vanillic acid from eugenol has been developed. The method uses ligand‐ and additive‐free Co(OAc)2 ? 4H2O as catalyst and molecular oxygen as oxidant to achieve catalytic process without isomerizing eugenol. Extensive screening efforts were used to optimize eugenol to obtain vanillin and vanillic acid. Under optimal conditions, the reaction provided vanillin and vanillic acid with 68.5 % and 15.2 % yields, respectively. Apart from the desired products, coniferyl alcohol 9‐methyl ether and 4‐hydroxy‐3‐methoxycinnamaldehyde as two intermediates were also detected in the reaction process. Level changes of all compounds over time were presented in the reaction. The reaction pathway from eugenol to vanillic acid was validated by conducting several control experiments. Furthermore, a possible reaction mechanism dominated by a circular redox reaction from Co(III) and Co(II) species was proposed. This method offers a potentially practical alternative for manufacturing vanillin and vanillic acid efficiently.  相似文献   

18.
Convenient expression systems for efficient heterologous production of different laccases are needed for their characterization and application. The laccase cDNAs lcc1 and lcc2 from Trametes versicolor were expressed in Pichia pastoris and Aspergillus niger under control of their respective glyceraldehyde-3-phosphate dehydrogenase promoters and with the native secretion signal directing catalytically active laccase to the medium. P. pastoris batch cultures in shake-flasks gave higher volumetric activity (1.3 U/L) and a better activity to biomass ratio with glucose than with glycerol or maltose as carbon source. Preliminary experiments with fed-batch cultures of P. pastoris in bioreactors yielded higher activity (2.8 U/L) than the shake-flask experiments, although the levels remained moderate and useful primarily for screening purposes. With A. niger, high levels of laccase (2700 U/L) were produced using a minimal medium containing sucrose and yeast extract. Recombinant laccase from A. nigher harboring the lcc2 cDNA was purified to homogeneity and it was found to be a 70-kDa homogeneous enzyme with biochemical and catalytic properties similar to those of native T. versicolor laccase A.  相似文献   

19.
Debaryomyces hansenii NRRL Y-7426 metabolised ferulic acid into different phenolic compounds using a factorial design where glucose concentration (in the range of 1?C20?g/L), peptone concentration (2?C20?g/L) and yeast extract concentration (0.2?C10?g/L) were the independent variables. The interrelationship between dependent and operational variables was well fitted (R 2?>?0.95) to models including linear, interaction and quadratic terms. Depending on the glucose and nitrogen concentrations, which redirected the metabolism, the major degradation products were 1,226.2?mg 4-vinyl guaiacol/L after 72?h (molar yield of 86.0?%), 1,077.8?mg vanillic acid/L after 360?h (molar yield of 91.1?%) or 1,682.6?mg acetovanillone/L after 408?h (molar yield of 98.8?%) in fermentations carried out with 2,000?mg ferulic acid/L. Other metabolites such as vanillin, vanillyl alcohol or 4-ethylguaiacol were present in lower amounts.  相似文献   

20.
Citric acid (CA) production has been conducted through a careful strain selection, physical–chemical optimization and mutation. The aim of this work was to optimize the physical–chemical conditions of CA production by solid-state fermentation (SSF) using the Aspergillus niger LPB BC strain, which was isolated in our laboratory. The parental and mutant strain showed a good production of CA using citric pulp (CP) as a substrate. The physical–chemical parameters were optimized and the best production was reached at 65% moisture, 30 °C and pH 5.5. The influence of the addition of commercial and alternative sugars, nitrogen sources, salts, and alcohols was also studied. The best results (445.4 g of CA/kg of CP) were obtained with sugarcane molasses and 4% methanol (v/w). The mutagenesis induction of LPB BC was performed with UV irradiation. Eleven mutant strains were tested in SSF where two mutants showed a higher CA production when compared to the parental strain. A. niger LPB B3 produced 537.6 g of CA/kg of CP on the sixth day of fermentation, while A. niger LPB B6 produced 616.5 g of CA/kg of CP on the fourth day of fermentation, representing a 19.5% and 37% gain, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号