首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established.  相似文献   

2.
The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g(0)(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n< or =6), and predicts free energies that are within 0.3 kT of simulation results up to the fluid freezing point.  相似文献   

3.
It was proven that after averaging over the canonical Gibbs ensemble, the mean perturbation energy was singled out of the classical partition function before the expansion in a series of perturbation theory. Therefore, the term that formally coincides with first order perturbation theory in a decomposition of the Helmholtz free energy bears no relationship to perturbation theory. Then the proper series of the thermodynamic perturbation theory always starts with a second order infinitesimal. Therefore, the wellknown condition of applicability of the thermodynamic perturbation theory, “...the requirement that the perturbation energy per particle be small compared with T...” (L. D. Landau and E. M. Livshits, Statistical Physics, Vol. V, Pt. I), can be substantially weakened. The most important factor for applicability of thermodynamic perturbation theory is the value of many-particle correlations in an unperturbed system, but not the smallness of the perturbation potential.  相似文献   

4.
The radial distribution function for a fluid whose molecules interact according to the Stockmayer potential was calculated by means of thermodynamic perturbation theory using two different approximations for the perturbation term and was compared with computer simulation results. The approximation based on the Percus-Yevick equation was found to be in much better agreement with the simulations than was the “simplified superposition approximation” to the perturbation term.  相似文献   

5.
The heat capacities of dipolar fluids are investigated using a thermodynamic perturbation theory approach and the NVT and NpT Monte Carlo simulation methods. The theoretical results are compared to corresponding simulation data. The comparison shows that the applied perturbation theory is appropriate for the heat capacity calculations. As an application, the isobaric heat capacity of ammonia is also studied by the Stockmayer fluid model.  相似文献   

6.
The thermodynamic properties and site—site distribution functions of mixtures of non-spherical molecules are obtained by Monte Carlo simulation. A non-spherical reference-system perturbation theory based on the RISM equation is developed to predict these results. The agreement between theory and simulation for the thermodynamic properties is encouraging. Important differences in the relative peak heights of the site—site distribution functions from theory and simulation are attributed to the role of attractive forces in determining local structure in the fluid mixtures, where the volumes of the components are similar but the well depths differ.  相似文献   

7.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

8.
Using the framework of Wertheim's thermodynamic perturbation theory we develop the first density functional theory which accounts for intramolecular association in chain molecules. To test the theory new Monte Carlo simulations are performed at a fluid solid interface for a 4 segment chain which can both intra and intermolecularly associate. The theory and simulation results are found to be in excellent agreement. It is shown that the inclusion of intramolecular association can have profound effects on interfacial properties such as interfacial tension and the partition coefficient.  相似文献   

9.
A completely analytic perturbation theory equation of state for the freely-jointed square-well chain fluid of variable well width (1 ≤ λ ≤ 2) is developed and tested against Monte Carlo simulation data. The equation of state is based on second-order Barker and Henderson perturbation theory to calculate the thermodynamic properties of the reference monomer fluid, and on first-order Wertheim thermodynamic perturbation theory to account for the connectivity of monomers to form chains. By using a recently developed real function expression for the radial distribution function of hard spheres in perturbation theory, we obtain analytic, closed form expressions for the Helmholtz free energy and the radial distribution function of square-well monomers of any well width. This information is used as the reference fluid in the perturbation theory of Wertheim to obtain an analytic equation of state, without adjustable parameters, that leads to good predictions of the compressibility factors and residual internal energies for 4-mer, 8-mer and 16-mer square-well fluids when compared with the simulation results. Further, very good results are obtained when this equation of state with temperature-independent parameters is used to correlate the vapor pressures and critical points of the linear alkanes from methane to n-decane.  相似文献   

10.
Investigating thermodynamic properties of a model for liquid Ga, we have extended the application of the hard-sphere (HS) perturbation theory to an interatomic pair potential that possesses a soft repulsive core and a long-range oscillatory part. The model is interesting for displaying a discontinuous jump on the main-peak position of the radial distribution function at some critical density. At densities less than this critical value, the effective HS diameter of the model, estimated by the variational HS perturbation theory, has a substantial reduction with increasing density. Thus, the density dependence of the packing fraction of the HS reference fluid has an anomalous behavior, with a negative slope, within a density region below the critical density. By adding a correction term originally proposed by Mon to remedy the inherent deficiency of the HS perturbation theory, the extended Mansoori-Canfield/Rasaiah-Stell theory [J. Chem. Phys. 120, 4844 (2004)] very accurately predicts the Helmholtz free energy and entropy of the model, including an excess entropy anomaly. Almost occurring in the same density region, the excess entropy anomaly is found to be associated with the anomalous packing faction of the HS fluid.  相似文献   

11.
An analytic representation of thermodynamic properties of the freely jointed square-well chain fluid is developed based on the thermodynamic perturbation theory of Barker–Henderson, Zhang and Weitheim. By using a real function expression for the radial distribution function and incorporating structural information for square-well monomer of TPT1 model, an analytic expression for the Helmholtz energy of square-well chain fluid is expanded from Zhang’s analytic expressions for thermodynamic properties of square-well monomer. The expression leads to good predictions of the compressibility factor, residual internal energy and constant-volume heat capacity for 4-mer, 8-mer and 16-mer square-well fluids when compared with the Monte Carlo (MC) simulation results. The incorporating structural information for square-well dimer of TPT-D model is also calculated. To obtain the constant-volume heat capacity needed, NVT MC simulations were performed.  相似文献   

12.
Pressure and internal energy of a fluid composed of polarizable Stockmayer molecules have been calculated by a molecular dynamics computation as well as by thermodynamic perturbation theory. It is found that the effect of molecular polarizability is underestimated by perturbation theory.  相似文献   

13.
The fluid phase equilibrium of the Stockmayer fluid is investigated using a thermodynamic perturbation theory approach. The reference and the perturbation potential are the Lennard–Jones potential and the dipolar–dipolar interactions, respectively. They are assumed to be represented by the modified Benedict–Webb–Rubin equation of state [J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78 (1993) 591–618] and the Padé approximant [G. Stell, J.C. Rasaiah, H. Narang, Mol. Phys. 27 (1974) 1393–1414], respectively. The asymmetry found in an analogous study [M.E. van Leeuwen, B. Smit, E.M. Hendriks, Mol. Phys. 78 (1993) 271–283] based on the BWR equation of state [J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37 (1979) 1429–1454] is now not observed on the vapour–liquid equilibrium coexistence curves of Stockmayer fluids with dipolar strength of μ*2 = 1, 2, 3, and 4. Results agree with computer simulations for dipolar strength of μ*2 = 1; however as strength dipole increases, liquid densities are over-estimated.  相似文献   

14.
The accuracy of several theories for the thermodynamic properties of the Yukawa hard-sphere chain fluid are studied. In particular, we consider the polymer mean spherical approximation (PMSA), the dimer version of thermodynamic perturbation theory (TPTD), and the statistical associating fluid theory for potentials of variable attractive range (SAFT-VR). Since the original version of SAFT-VR for Yukawa fluids is restricted to the case of one-Yukawa tail, we have extended SAFT-VR to treat chain fluids with two-Yukawa tails. The predictions of these theories are compared with Monte Carlo (MC) simulation data for the pressure and phase behavior of the chain fluid of different length with one- and two-Yukawa tails. We find that overall the PMSA and TPTD give more accurate predictions than SAFT-VR, and that the PMSA is slightly more accurate than TPTD.  相似文献   

15.
To evaluate the performance of a recently proposed third-order thermodynamic perturbation theory (TPT), we employ the third TPT for calculation of thermodynamic properties such as compressibility factor, internal energy, excess chemical potential, gas-liquid coexistence curve, and critical properties of several fluids. By comparing the third-order TPT results with corresponding simulation data available in literature and supplied in the present report and theoretical results from several other theoretical approaches, one concludes that the third-order TPT is, in general, more accurate than other approaches such as Barker-Henderson second-order TPT using a macroscopic compressibility approximation (MCA-TPT), self-consistent Ornstein-Zernike approach, Monte Carlo perturbation theory, and a specially devised equation of state. Specifically, the third-order TPT can predict quantitatively a double critical phenomena of gas-liquid transition and a low-density liquid (LDL)-high-density liquid (HDL) transition associated with a soft core (SC) potential fluid very satisfactorily, but the predictions for the LDL-HDL transition based on the second-order MCA-TPT are quantitatively very bad or qualitatively incorrect. The failure of the second-order MCA-TPT for the SC fluid can be ascribed to the facts that for the SC potential the second-order and third-order terms of the perturbation expansion are not small quantities and that the second-order term is underestimated by the MCA. It is concluded that the present third-order version of the TPT is reliable for varying model fluids.  相似文献   

16.
A simple model is proposed for the direct correlation function (DCF) for simple fluids consisting of a hard-core contribution, a simple parametrized core correction, and a mean-field tail. The model requires as input only the free energy of the homogeneous fluid, obtained, e.g., from thermodynamic perturbation theory. Comparison to the DCF obtained from simulation of a Lennard-Jones fluid shows this to be a surprisingly good approximation for a wide range of densities. The model is used to construct a density functional theory for inhomogeneous fluids which is applied to the problem of calculating the surface tension of the liquid-vapor interface. The numerical values found are in good agreement with simulation.  相似文献   

17.
A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is extended for the fluid with multiple number of multiply bondable associating sites. We consider a multi-patch hard-sphere model for associating fluids. The model is represented by the hard-sphere fluid system with several spherical attractive patches on the surface of each hard sphere. Resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the models with arbitrary number of doubly bondable patches at all degrees of the blockage are presented. In the limiting case of total blockage, when the patches become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory (TPT) for polymerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. In general, predictions of the present theory are in good agreement with values for the model calculated using Monte Carlo simulations, i.e., the accuracy of our theory in the case of the models with multiply bondable sites is similar to that of Wertheim's TPT in the case of the models with singly bondable sites.  相似文献   

18.
The permeation of a condensable gas mixture in a pressure gradient is examined within a dynamic density functional theory (DDFT). The non-equilibrium density and flux profiles of gas molecules trapped within a nanopore are calculated for each species as a function of feed gas density. Because of important fluid–fluid interaction close to condensation the flux and density gradients are not related by constant transport diffusivities with the thermodynamic correction of uniform density. For long narrow pores the relation of the selectivity to the equilibrium adsorption isotherms is validated. Improved separation is achieved by combining preferential wall interaction and advantageous attraction between gas molecules of different species and examples are discussed. Results from experiments and simulations of permeation in binary mixtures near condensation are still rare and the theory provides a simple basis to study qualitative trends using known parameters.  相似文献   

19.
We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.  相似文献   

20.
The perturbed chain statistical associating fluid theory (PC-SAFT) is extended to polar molecular fluids, namely dipolar and quadrupolar fluids. The extension is based on the perturbation theory for polar fluids by Stell and co-workers. Appropriate expressions are proposed for dipole-dipole, quadrupole-quadrupole, and dipole-quadrupole interactions. Furthermore, induced dipole interactions are calculated explicitly in the model. The new polar PC-SAFT model is relatively complex; for this purpose, a truncated polar PC-SAFT model is proposed using only the leading term in the polynomial expansion for polar interactions. The new model is used for the calculation of thermodynamic properties of various quadrupolar pure fluids. In all cases, the agreement between experimental data and model predictions is very good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号