首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— An action spectrum was obtained for photoreactivation of killing (PR) of Streptomyces griseus conidia. This spectrum shows a major peak around 436 nm, originally observed by A. Kelner, and a secondary peak at 313 nm not previously reported. The rate of PR shows a strong dependence upon temperature and dose rate of the PR light at 436 nm, but this decreases to only a slight dependence upon these parameters at 313 nm. These findings suggested that PR at 436 nm in this organism is of the usual photoenzymatic type, but that PR at 313 nm might be of a different kind. A mutant (PHR-1) of S. griseus was found that shows only a narrow range of PR (roughly 310–400 nm) with a single peak at 313 nm. The PR efficiency was lower than for wild type and the PR sector not greater than one-half that of wild type. This PR shows no temperature dependence. Essentially similar behavior was observed with wild-type Streptomyces coelicolor. These findings show that at least some of the PR at 313 nm is a separable phenomenon. It is therefore unlikely to involve a mechanism identical to that at 436 nm. The nature of PR at 313 nm in Streptomyces is not known. If it is enzymatic, it is remarkable in having little or no dependence upon temperature and dose rate. Absence of photoprotection and liquid-holding recovery indicate that it is not indirect PR. Some of it (that part exhibited by S. griseus PHR-1 and S. coelicolor) might result from a direct photochemical action on DNA.  相似文献   

2.
Abstract— –Lethality in a repairable strain (WP2) and an excision repair deficient strain (WP2hcr) of Escherichia coli was studied at wavelengths of 254, 313, 365, and 390–750 nm. Survival curves were empirically fitted to the expression S= 1 - (1-e-kl)“, where S is the fraction surviving, D is the incident dose in ergs mm-2, k is the inactivation constant in units of (erg mm-2)-1 and n is the ‘shoulder constant’. The repairable sector (k(hcr-)–k(hcr-)lk(hcr-), a conservative estimate of the repair capability of E. coli WP2, was 0.91 at 254 nm, 0.92 at 313 nm, 0.60 at 365 nm, and 0.13 at 390–750 nm. Although there was no oxygen enhancement of inactivation at 254 nm and 313 nm, a strong enhancement was identified at 365 nm and 390–750 nm. These results suggest that oxygen-dependent damage induced by near u.v. (365 nm) can be partially repaired by the excision-repair system in E. coli.  相似文献   

3.
程丽娅  陈云  吴庆生 《化学学报》2007,65(17):1851-1854
利用平平加作为表面活性剂, 正戊醇作为助表面活性剂, 环己烷作为油相, 以硫化钠(Na2S)和醋酸锌(Zn(Ac)2)作为反应物, 通过控制反应条件在反相胶束体系中合成出单分散的ZnS纳米球与纳米梭. 采用XRD和TEM对产物的结构和形貌进行表征, 结果表明产物均为六方相ZnS, 晶胞参数为a=0.3823 nm, c=56.2 nm, 纳米球直径约为50 nm, 纳米梭直径约为60 nm, 长度约为110 nm. 采用UV-Vis(紫外可见吸收光谱)和PL(荧光光谱)研究了产物的光学性能. 纳米球的紫外可见光谱的吸收峰出现在288 nm处, 而纳米梭在305 nm处有强吸收峰, 与块体材料相比, 分别有约60和50 nm的蓝移. 当激发波长为270 nm时, 纳米球和纳米梭产物分别能够发出波长为408和303 nm的紫外光.  相似文献   

4.
The non‐photochromic fulgide (1‐Z) has been successfully converted into the highly photochromic ( 3‐Z ) analogue. A dicyanomethylene group was introduced at the 5‐position of 1‐Z in order to enhance the latter's conjugation properties that would facilitate the photochemical Z→E isomerization process. The irradiation of the product 3‐Z with a UV light at λmax 350 nm formed a bluish green solution which absorbed at λmax 620 nm, corresponding to the ring‐closed product 4. The latter was also formed from the reference dicyanomethylene product 3‐E synthesized from 1‐E. The irradiation of 4 at λmax 532 nm produced the reversion to the original pale yellow color of 3‐E.  相似文献   

5.
A spectral peak at ~421 nm appeared in vivo spectrum of Rhodopseudomonas palustris CQV97 cultured in acetate–glutamate medium (M1) but not in acetate–ammonium sulfate medium (M2). However, the spectral origin of 421 nm peak was not clear and frequently attributed to carotenoid component(s). In this study, comparative analysis of the extracted components showed that magnesium protoporphyrin IX monomethylester (MPE) was accumulated as one of the predominate components in M1 culture. The amounts of bacteriochlorophyll a in M1 culture were higher than that in M2, whereas the amounts of carotenoids were nearly identical in both cultures. A simple, rapid and minimum interference with carotenoid and bacteriochlorophyll method to efficiently extract the compounds involving in the formation of 421 nm peak was developed in this study. Assembly of purified MPE with protein components from R. palustris in vitro demonstrated that MPE caused the formation of 421 nm peak. The localization analysis in vivo demonstrated it is MPE associating to protein components and accounting for the peak at ~421 nm. This work clarified the 421 nm peak in vivo mainly originated from MPE accumulation, and will be very helpful to further explore the physiological roles of MPE or its derivatives in photosynthesis.  相似文献   

6.
We have cloned a novel fluorescent protein from the jellyfish Rhacostoma atlantica. The closest known related fluorescent protein is the Phialidium yellow fluorescent protein, with only a 55% amino acid sequence identity. A somewhat unusual alanine–tyrosine–glycine amino acid sequence forms the presumed chromophore of the novel protein. The protein has an absorption peak at 466 nm and a fluorescence emission peak at 498 nm. The fluorescence quantum yield was measured to be 0.77 and the extinction coefficient is 58 200 M?1 cm?1. Several mutations were identified that shift the absorption peak to about 494 nm and the emission peak to between 512 and 514 nm.  相似文献   

7.
MULTIPLE CHROMOPHORE SPECIES IN PHYTOCHROME*,†,‡   总被引:2,自引:0,他引:2  
Abstract— Buffered aqueous solutions of pure phytochrome, when irradiated at 730 nm, had a main absorption band at about 660 nm and a shoulder or secondary band at 580–600 nm. When irradiated at 660 nm, these absorption bands bleached and a pair of bands at 670 and 725–730 nm appeared. When 660 nm irradiated samples were placed in the dark the 730 nm absorption slowly bleached and the 670 nm absorption band shifted to 660 nm. The kinetics of the bleaching indicated that two populations of PFR existed initially. These two populations decayed by first order kinetics with k's of 4.8 × 10-4 sec-1 and 3.1 × 10--5 sec-1at 25°. While the bleaching of PFR was occumng, the appearance of the 660 nm and 580–600 nm absorption bands characteristic of PR took place. The kinetics of the increase in the 580 and 660 nm absorption bands indicated that it was arising from two populations of reactants by two first order reactions with k's of 6.4 × 10-4 sec-1 and 3.1 × 10-5sec-1 at 25°. When the sodium chloride concentration of the solvent was changed the proportions of the kinetically different populations were altered. In some conditions, especially in the presence of air. reversible but non-reciprocal changes in the four absorption bands were observed. These effects were evident after the lapse of many hours in the dark. When native phytochrome was treated with sodium dodecyl sulfate all absorption bands but the 580–600 nm absorption band were bleached and photoreversibility was lost. When native phytochrome was treated with glutaraldehyde, the 730 nm absorption band was bleached but photoreversibility was retained. It was concluded that at least four species of chromophore exist in phytochrome with absorption maxima at 580, 660 , 670 and 730 nm. Each chromophore is capable of being bleached by appropriate irradiation or in the dark by chemical reactions rather than photochemical reactions. The reactions are probably coupled redox reactions between the 580–660 nm pair and the 670–730 pair of chromophores. Discrepancies observed in the reciprocity of the absorption changes in these paired bands are probably due to various degrees of uncoupling and secondarily to the redox potential of the solvent when such uncoupling occurs.  相似文献   

8.
A palladium(II) acetate‐catalyzed synthesis of 1 that utilizes the novel triazene 1‐{4‐[(E)‐morpholin‐4‐yldiazenyl]phenyl}ethanone as a synthon is described. The room temperature absorption spectra of 1 in various solvents exhibited a ππ* transition in the range of 330–350 nm. Compound 1 was observed to be luminescent, with room‐temperature solution and solid‐state emission spectra that exhibited maxima in the range 400–500 nm. All room‐temperature absorption and emission spectra exhibited some degree of vibrational structure. The emission spectrum of 1 at 77 K in propanenitrile glass was broad and featureless with a maximum at 447 nm. Compound 1 crystallized as a yellow and colorless polymorph. X‐Ray structure analyses of both of these polymorphs and 1‐{4‐[(E)‐morpholin‐4‐yldiazenyl]phenyl}ethanone are presented.  相似文献   

9.
Nanosecond laser flash photolysis (λ = 355 nm) of an aqueous solution of 3-chloro-3-p-chlorophenyldiazirine in isooctane produces a transient absorption at 310 nm due to the formation of the carbene. In the presence of 2-vinylpyridine, a second transient with a broad absorption band peaking at 520 nm grows in. This absorption is attributed to 2-vinylpyridinium ylide. The ylide decays with a lifetime equal to 33 µs at 25°C independent of the concentration of 2-vinylpyridine. As the ylide decays, there is a concomitant growth of an absorption at 330 nm, attributed to the formation of inodolizine. The activation parameters for the 1,5-dipolar cyclization of the ylide to indolizine were determined; Ea = 12.1 kcal mol?1 and log A = 13.4. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Based on the solid phase/liquid deposition CdSe quantum dots (QD) were synthesized using selenium and cadmium‐salt as precursor at room temperature. The average diameter of CdSe QD estimated from the high resolution transmission electron microscopy (HRTEM) graph and absorption spectra was ca. 3–3.5 nm. The mercaptoacetic‐acid stabilized CdSe QD exhibited ultraviolet absorption at 350 and 380 nm and strong fluorescence emission at 481.6 nm, respectively. When conjugated with pepsin, the fluorescence peak intensity of CdSe QD decreased considerably and the fluorescence peak shifted to 467.2 nm. Under optimal conditions, a concentration in 5–50 mg· L?1 of pepsin could be determined on the basis of fluorescence decrease ratio of CdSe QD, with a detection limit 3δ of 0.36 mg·L?1 (n=10). The proposed method was applied to detection of the concentration of pepsin in human gastric juice.  相似文献   

11.
Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass‐selected deposition of C13H9+ ions (m/z=165) produced from fluorene in a hot‐cathode discharge ion source. The benz[f]indenylium (BfI+: 538 nm), fluorenylium (FL9+: 518 nm), and phenalenylium (PHL+: 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 1B2←X̃ 1A1 absorption of FL9+, and the 490 nm band is the 2 2A2←X̃ 2B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 1A1←X̃ 1A1 and 1 2A2←X̃ 2A2 transitions of BfI+ and BfI. The 392 nm band is the 1 1E′←X̃ 1A1′ transition of PHL+. The electronic spectra of C13H9+/C13H9 were assigned on the basis of the vertical excitation energies calculated with SAC‐CI and MS‐CASPT2 methods.  相似文献   

12.
Three vibrationally resolved absorption systems commencing at 538, 518, and 392 nm were detected in a 6 K neon matrix after mass‐selected deposition of C13H9+ ions (m/z=165) produced from fluorene in a hot‐cathode discharge ion source. The benz[f]indenylium (BfI+: 538 nm), fluorenylium (FL9+: 518 nm), and phenalenylium (PHL+: 392 nm) cations are the absorbing molecules. Two electronic systems corresponding to neutral species are apparent at 490 and 546 nm after irradiation of the matrix with λ<260 nm photons and were assigned to the FL9 and BfI radicals, respectively. The strongest peak at 518 nm is the origin of the 2 1B2←X? 1A1 absorption of FL9+, and the 490 nm band is the 2 2A2←X? 2B1 origin of FL9. The electronic systems commencing at 538 nm and 546 nm were assigned to the 1 1A1←X? 1A1 and 1 2A2←X? 2A2 transitions of BfI+ and BfI. The 392 nm band is the 1 1E′←X? 1A1′ transition of PHL+. The electronic spectra of C13H9+/C13H9 were assigned on the basis of the vertical excitation energies calculated with SAC‐CI and MS‐CASPT2 methods.  相似文献   

13.
The title compound 1 is shown to give, both upon direct irradiation at 254 nm and upon acetophenone-sensitized photolysis at 300 nm, the syn-vinyl-pentamethylhousene 5 , which spontaneously rearranges in a [3,3]0sigmatropic process to give the bicyclo[3.2.0]heptadiene skeleton 2 . Based on the photochemical behaviour of selectively deuterated starting material, the suggestion is made that the direct photolysis produces the vinylhousene skeleton by a classic electrocyclization, whereas the sensitized reaction reaches the same target via a di-π-methane rearrangement. The bicyclo[3.2.0]heptadiene derivative 2 give pentamethylhomoprismane 3 upon prolonged irradiation at 254 nm.  相似文献   

14.
Reactions of eaq, OH radicals and H atoms were studied with n-allylthiourea (NATU) using pulse radiolysis. Hydrated electrons reacted with NATU (k = 2.8×109 dm3 mol−1 s−1) giving a transient species which did not have any significant absorption above 300 nm. It was found to transfer electrons to methyl viologen. At pH 6.8, the reduction potential of NATU has been determined to be −0.527 V versus NHE. At pH 6.8, OH radicals were found to react with NATU, giving a transient species having absorption maxima at 400–410 nm and continuously increasing absorption below 290 nm. Absorption at 400–410 nm was found to increase with parent concentration, from which the equilibrium constant for dimer radical cation formation has been estimated to be 4.9×103 dm3 mol−1. H atoms were found to react with NATU with a rate constant of 5 × 109 dm3 mol−1 s−1, giving a transient species having an absorption maximum at 310 nm, which has been assigned to H-atom addition to the double bond in the allyl group. Acetoneketyl radicals reacted with NATU at acidic pH values and the species formed underwent reaction with parent NATU molecule. Reaction of Cl.−2 radicals (k = 4.6 × 109 dm3 mol−1 s−1) at pH 1 was found to give a transient species with λmax at 400 nm. At the same pH, reaction of OH radicals also gave transient species, having a similar spectrum, but the yield was lower. This showed that OH radicals react with NATU by two mechanisms, viz., one-electron oxidation, as well as addition to the allylic double bond. From the absorbance values at 410 nm, it has been estimated that around 38% of the OH radicals abstract H atoms and the remaining 62% of the OH radicals add to the allylic double bond.  相似文献   

15.
Spectrofluorimetric and spectrophotometric stability‐indicating methods were developed and validated for analysis of veralipride (Ver) in presence of its hydrolytic and oxidative degradants. The spectrofluorimetric method was based on direct measurement of the intrinsic fluorescence of Ver at 366 nm after excitation at 299 nm using sodium lauryl sulfate (SLS) as micelle enhancer. The fluorescence intensity plot was linear over the concentration range 1.0–10.0 µg·mL?1. The high sensitivity of the method allowed its successful application to the analysis of Ver in spiked human plasma. Two other methods were developed. They are based on the oxidative coupling reaction of Ver with 3‐methyl benzothiazolin‐2‐one hydrazone (MBTH) hydrochloride in presence of ceric ammonium sulphate in an acidic medium. The first method depends on spectrophotometric measurement of the stable green colored oxidative coupling product at 660 nm. The different experimental parameters affecting the reaction were optimized. Linearity range is 10.0–100.0 µg·mL?1. The second method depends on a fluorescence quenching effect of Ver on the fluorescence of Ce3+. The difference in fluorescence intensity was measured at 380 nm after excitation at 300 nm. This method is applicable over the concentration ranges 0.25–2.50 µg·mL?1. The methods were validated according to the ICH guidelines. They were successfully applied for the analysis of Ver in drug substance, drug product and in laboratory prepared mixtures containing different percentages of hydrolytic and oxidative degradants.  相似文献   

16.
A novel triazene, 4‐[(E)‐2‐(4‐cyanophenyl)diazenyl]‐morpholine ( 1 ) was prepared via a diazonium ion coupling reaction between 4‐aminobenzonitrile and morpholine. The x‐ray structure of 1 was determined and evidenced π delocalization in the triazene subunit. The room temperature absorption spectrum of 1 in acetonitrile was dominated by an intense triazene‐centered π→π* transition at 325 nm. Compound 1 was observed to be luminescent, with an emission maximum at 434 nm in room temperature acetonitrile solution. The emission spectrum of 1 in propionitrile glass at 77K exhibited a narrowed emission band with a maximum at 449 nm. Broad emission from 400–700 nm with poorly resolved vibrational structure was observed from solid 1 at room temperature. J. Heterocyclic Chem., 2011.  相似文献   

17.
A circular (CD) and linear dichroism (LD) study of the water adducts of the green plant chlorophylls a (Chl a) and b (Chl b) in hydrocarbon solvents 3-methylpentane and paraffin oil is presented. A strong red shift of the Qy-absorption band from 663 to 746 nm (1678 cm?1) is observed as the water adduct of Chl a is formed. The Chl a-water adduct shows a strong, nonconservative CD signal, which is characterized by a positive peak at 748 nm and two negative peaks at 720 and 771 nm. The maximum CD (AL - AR) is only one order of magnitude smaller than the isotropic absorption maximum. We propose that this exceptionally strong signal is the so-called psi-type CD. The LD spectrum was measured in a flow of paraffin oil. The isotropic absorption maximum peaks at 742 nm in paraffin oil, whereas the maximum of the LD signal is at 743 nm. The LD signal is positive over the whole water-adduct absorption band indicating that the transition dipole of the 742 nm transition is preferentially oriented along the long axis of the aggregate. The structure of the Chl b-water adduct is less well defined. The preparations of the Chl b-water adduct are unstable. The Chl b-water adduct absorption band maximum is at 683 nm. The CD signal of the Chl a-water adduct is about 200-fold the CD of the Chl b-water adduct. We could not orient the Chl b-water adducts by flow, which suggests that the adducts are small or disordered.  相似文献   

18.
Self‐assembly of azobenzene‐modified amphiphiles (GlynAzo, n=1–3) in water at room temperature in the presence of a protein produced nanotubes with the protein encapsulated in the channels. The Gly2Azo nanotubes (7 nm internal diameter [i.d.]) promoted refolding of some encapsulated proteins, whereas the Gly3Azo nanotubes (13 nm i.d.) promoted protein aggregation. Although the 20 nm i.d. channels of the Gly1Azo nanotubes were too large to influence the encapsulated proteins, narrowing of the i.d. to 1 nm by trans‐to‐cis photoisomerization of the azobenzene units of the Gly1Azo monomers packed in the solid bilayer membranes led to a squeezing out of the proteins into the bulk solution and simultaneously enhanced their refolding ratios. In contrast, photoinduced transformation of the Gly2Azo nanotubes to short nanorings (<40 nm) with a large i.d. (28 nm) provided no further refolding assistance. We thus demonstrate that pertubation by the solid bilayer membrane wall of the nanotubes is important to accelerate refolding of the denatured proteins during their transport in the narrow nanotube channels.  相似文献   

19.
1-(4,5-Dihydro-1H-imidazolo-2-yl)benzotriazole was photolyzed at 254 nm yielding 1,2-dihydro-4H-imidazo-[1,2-a]benzimidazole.  相似文献   

20.
Membrane fragments of Heliobacillus (Hc.) mobilis were characterized using resonance Raman (RR) spectroscopy in order to determine the configuration of the neurosporene carotenoid, the pigment-protein interactions of the bacteriochlorophyll (BChl) g molecules, and the Chl a-like chlorin pigments present in the antenna-reaction center complex constituting the photosynthetic apparatus. Using 363.8 nm excitation, the Raman contributions of the BChl g molecules were selectively resonantly enhanced over those of the carotenoid and the Chl a-like chlorin pigments. The RR spectrum of BChl g in these membranes excited at 363.8 nm exhibits bands at 1614 and 1688 cm?1, which correspond to a CaCm methine bridge stretching mode and a keto carbonyl group stretching mode, respectively. Both of these bands are 16 cm?1 wide (full width at half maximum, FWHM), indicating that a sole population of BChl g molecules is being enhanced at this excitation wavelength. The observed frequency of the CaCm stretching mode (1614 cm?1) indicates that the bulk of BChl g molecules is pentacoordinated with only one axial ligand to the central Mg atom while that of the keto carbonyl stretching mode (1668 cm?1) indicates that these groups are engaged in a hydrogen bond. This homogeneous population of BChl g molecules bound to the heliobacterial core polypeptides is in contrast to the heterogeneous population of Chl a molecules bound to the core polypeptides of the reaction center of photosystem I of Synechocystis 6803 as observed by the inhomogeneously broadened C9 keto carbonyl band in its RR spectrum. The RR spectrum of the Chl a-like chlorin pigments in Hc. mobilis excited at 441.6 nm exhibits a broad keto carbonyl band (43 cm?1 FWHM) with components at 1665, 1683 and 1695 cm?1, indicating several populations of these pigments differing in their protein interactions at the level of the keto carbonyl group. Fourier transform (FT) pre-RR spectroscopic measurements of intact whole cells and membrane fragments at room temperature using 1064 nm excitation indicate that high quality vibrational spectra of the BChl g molecules can be obtained with no photodegradation. Low-temperature FT Raman spectra excited at 1064 nm reveals an inhomogeneously broadened 1665 cm?1 band corresponding to the C9 keto carbonyl stretching mode. Spectral deconvolution and second derivative analysis of this band reveal that it is comprised of components at 1665, 1682 and 1695 cm?1, the latter two most likely arising from BChl g photoconversion products. Excitation using 885 nm to enhance the preresonance effect of the BChl g molecules yields an FT Raman spectrum where the keto carbonyl band at 1665 cm?1 is narrow, as is the case in the Soret RR spectra, reflecting a sole population of BChl g molecules, which are engaged in an H bond. The RR spectrum of the neurosporene molecule in Hc. mobilis membranes excited at 496.5 nm is compared to that of 1,2-dihydroneurosporene bound in a cis configuration in reaction centers of Rhodopseudomona viridis and to that of the same carotenoid in its all-trans configuration extracted from these reaction centers in the presence of light. The similarity of this latter RR spectrum with that of neurosporene in the Hc. mobilis membranes indicates that it is bound in an all-trans configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号