首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Some doubly periodic (Jacobi elliptic function) solutions of the coupled Schrödinger–Boussinesq (KdV) equations are presented in closed form. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solution to construct doubly periodic solutions of the coupled equations. When the module m→1, these solutions degenerate to the exact solitary wave solutions of the coupled equations.  相似文献   

2.
Generalized solitary waves with exponentially small nondecaying far field oscillations have been studied in a range of singularly perturbed differential equations, including higher order Korteweg‐de Vries (KdV) equations. Many of these studies used exponential asymptotics to compute the behavior of the oscillations, revealing that they appear in the solution as special curves known as Stokes lines are crossed. Recent studies have identified similar behavior in solutions to difference equations. Motivated by these studies, the seventh‐order KdV and a hierarchy of higher order KdV equations are investigated, identifying conditions which produce generalized solitary wave solutions. These results form a foundation for the study of infinite‐order differential equations, which are used as a model for studying lattice equations. Finally, a lattice KdV equation is generated using finite‐difference discretization, in which a lattice generalized solitary wave solution is found.  相似文献   

3.
Dedicated to Professor Yuzan He on the Occasion of his 80th Birthday In this paper, we employ the complex method to obtain all meromorphic solutions of an auxiliary ordinary differential equation at first and then find out all meromorphic exact solutions of the combined KdV–mKdV equation and variant Boussinesq equations. Our result shows that all rational and simply periodic exact solutions of the combined KdV–mKdV equation and variant Boussinesq equations are solitary wave solutions, the method is more simple than other methods, and there exist some rational solutions wr,2(z) and simply periodic solutions ws,2(z) that are not only new but also not degenerated successively by the elliptic function solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.Received: December 16, 2003  相似文献   

5.
This paper is concerned with the effect of slowly changing the length of a tank on the nonlinear standing waves (free vibrations) and resonant forced oscillations of shallow water in the tank. The analysis begins with the Boussinesq equations. These are reduced to a nonlinear differential-difference equation for the slow variation of a Riemann invariant on one end. Then a multiple scale expansion yields a KdV equation with slowly changing coefficients for the standing wave problem, which is reduced to a KdV equation with a variable dispersion coefficient. The effect of changing the tank length on the number of solitons in the tank is investigated through numerical solutions of the variable coefficient KdV equation. A KdV equation which is “periodically” forced and slowly detuned results for the passage through resonance problem. Then the amplitude-frequency curves for the fundamental resonance and the first overtone are given numerically, as well as solutions corresponding to multiple equilibria. The evolution between multiple equilibria is also examined.  相似文献   

6.
This paper deals with recent developments of linear and nonlinear Rossby waves in an ocean. Included are also linear Poincaré, Rossby, and Kelvin waves in an ocean. The dispersion diagrams for Poincaré, Kelvin and Rossby waves are presented. Special attention is given to the nonlinear Rossby waves on a β-plane ocean. Based on the perturbation analysis, it is shown that the nonlinear evolution equation for the wave amplitude satisfies a modified nonlinear Schrödinger equation. The solution of this equation represents solitary waves in a dispersive medium. In other words, the envelope of the amplitude of the waves has a soliton structure and these envelope solitons propagate with the group velocity of the Rossby waves. Finally, a nonlinear analytical model is presented for long Rossby waves in a meridional channel with weak shear. A new nonlinear wave equation for the amplitude of large Rossby waves is derived in a region where fluid flows over the recirculation core. It is shown that the governing amplitude equations for the inner and outer zones are both KdV type, where weak nonlinearity is balanced by weak dispersion. In the inner zone, the nonlinear amplitude equation has a new term proportional to the 3/2 power of the difference between the wave amplitude and the critical amplitude, and this term occurs to account for a nonlinearity due to the flow over the vortex core. The solution of the amplitude equations with the linear shear flow represents the solitary waves. The present study deals with the lowest mode (n=1) analysis. An extension of the higher modes (n?2) of this work will be made in a subsequent paper.  相似文献   

7.
We consider the study of an eigenvalue problem obtained by linearizing about solitary wave solutions of a Boussinesq equation. Instead of using the technique of Evans functions as done by Pego and Weinstein in [R. Pego and M. Weinstein, Convective Linear Stability of Solitary Waves for Boussinesq equation. AMS, 99, 311–375] for this particular problem, we perform Fourier analysis to characterize solutions of the eigenvalue problem in terms of a multiplier operator and use the strong relationship between the eigenvalue problem for the linearized Boussinesq equation and the eigenvalue problem associated with the linearization about solitary wave solutions of a special form of the KdV equation. By using a generalization of the Rouché Theorem and the asymptotic behavior of the Fourier symbol corresponding to the eigenvalues problem for the Boussinesq equation and the Fourier symbol corresponding to the eigenvalues problem for the KdV equation, we show nonexistence of eigenvalues with respect to weighted space in a planar region containing the right-half plane.  相似文献   

8.
The one-dimensional Euler–Poisson system arises in the study of phenomena of plasma such as plasma solitons, plasma sheaths, and double layers. When the system is rescaled by the Gardner–Morikawa transformation, the rescaled system is known to be formally approximated by the Korteweg–de Vries (KdV) equation. In light of this, we show existence of solitary wave solutions of the Euler–Poisson system in the stretched moving frame given by the transformation, and prove that they converge to the solitary wave solution of the associated KdV equation as the small amplitude parameter tends to zero. Our results assert that the formal expansion for the rescaled system is mathematically valid in the presence of solitary waves and justify Sagdeev's formal approximation for the solitary wave solutions of the pressureless Euler–Poisson system. Our work extends to the isothermal case.  相似文献   

9.
10.
This paper is concerned with several aspects of travelling wave solutions for a (N+1) dimensional potential KdV equation. The Weierstrass elliptic function solutions, the Jaccobi elliptic function solutions, solitary wave solutions, periodic wave solutions to the equation are acquired under certain circumstances. It is shown that the coefficients of derivative terms in the equation cause the qualitative changes of physical structures of the solutions.  相似文献   

11.
Convective Linear Stability of Solitary Waves for Boussinesq Equations   总被引:2,自引:0,他引:2  
Boussinesq was the first to explain the existence of Scott Russell's solitary wave mathematically. He employed a variety of asymptotically equivalent equations to describe water waves in the small-amplitude, long-wave regime. We study the linearized stability of solitary waves for three linearly well-posed Boussinesq models. These are problems for which well-developed Lyapunov methods of stability analysis appear to fail. However, we are able to analyze the eigenvalue problem for small-amplitude solitary waves, by comparison to the equation that Boussinesq himself used to describe the solitary wave, which is now called the Korteweg–de Vries equation. With respect to a weighted norm designed to diminish as perturbations convect away from the wave profile, we prove that nonzero eigenvalues are absent in a half-plane of the form R λ>− b for some b >0, for all three Boussinesq models. This result is used to prove the decay of solutions of the evolution equations linearized about the solitary wave, in two of the models. This "convective linear stability" property has played a central role in the proof of nonlinear asymptotic stability of solitary-wave-like solutions in other systems.  相似文献   

12.
在Boussinesq方程组求解方面,用平面动力系统的分支理论研究了一类变形的Boussinesq方程组的行波解分支.得到了不同参数条件下的分支集、相图及所有孤立波和扭波的精确公式.  相似文献   

13.
Summary. Investigated here are interesting aspects of the solitary-wave solutions of the generalized Regularized Long-Wave equation For p>5 , the equation has both stable and unstable solitary-wave solutions, according to the theory of Souganidis and Strauss. Using a high-order accurate numerical scheme for the approximation of solutions of the equation, the dynamics of suitably perturbed solitary waves are examined. Among other conclusions, we find that unstable solitary waves may evolve into several, stable solitary waves and that positive initial data need not feature solitary waves at all in its long-time asymptotics. Received March 28, 2000; accepted August 24, 2000 %%Online publication November 15, 2000 Communicated by Thanasis Fokas  相似文献   

14.
在推广的β平面近似下,从包含耗散和外源的准地转位涡方程出发,利用Gardner-Morikawa变换和弱非线性摄动展开法,推导出带有外源和耗散强迫的非线性Boussinesq方程去刻画非线性Rossby波振幅的演变和发展.利用修正的Jacobi椭圆函数展开法,得到Boussinesq方程的周期波解和孤立波解,从解的结构分析了推广的β效应、切变基本流、外源和耗散是影响非线性Rossby波的重要因素.  相似文献   

15.
Eight finite difference methods are employed to study the solitary waves of the equal-width (EW) and regularized long–wave (RLW) equations. The methods include second-order accurate (in space) implicit and linearly implicit techniques, a three-point, fourth-order accurate, compact operator algorithm, an exponential method based on the local integration of linear, second-order ordinary differential equations, and first- and second-order accurate temporal discretizations. It is shown that the compact operator method with a Crank–Nicolson discretization is more accurate than the other seven techniques as assessed for the three invariants of the EW and RLW equations and the L2-norm errors when the exact solution is available. It is also shown that the use of Gaussian initial conditions may result in the formation of either positive or negative secondary solitary waves for the EW equation and the formation of positive solitary waves with or without oscillating tails for the RLW equation depending on the amplitude and width of the Gaussian initial conditions. In either case, it is shown that the creation of the secondary wave may be preceded by a steepening and an narrowing of the initial condition. The creation of a secondary wave is reported to also occur in the dissipative RLW equation, whereas the effects of dissipation in the EW equation are characterized by a decrease in amplitude, an increase of the width and a curving of the trajectory of the solitary wave. The collision and divergence of solitary waves of the EW and RLW equations are also considered in terms of the wave amplitude and the invariants of these equations.  相似文献   

16.
The paper studies the influence of the time discretizations when simulating some phenomena involving more than one solitary wave. Taking the KdV equation as a case study, we obtain some conditions on the numerical method in order to get a more correct simulation of multi-soliton solutions. They are related to the evolution of the conserved quantities of the problem through the numerical integration. It is shown that, when approximating N-solitons, a method that preserves N invariants of the problem shows a better time propagation of the error than that of a general scheme. As a consequence of this, the simulation of some physical parameters that characterize the waves is more suitable when using conservative integrators. We also show how these results can be extended to the approximation to multi-solitons of any equation of the KdV hierarchy and, more generally, other integrable equations.  相似文献   

17.
With the aid of symbolic computation Maple, an extended Jacobi elliptic function expansion method is presented and successfully applied to variant Boussinesq equations. As a result, abundant periodic wave solutions in terms of the Jacobi elliptic functions are obtained. When the modulus m → 1 or m → 0, exact solitary wave solutions and trigonometric function solutions are also derived. The properties of four new solutions are graphically studied.  相似文献   

18.
In this paper, the existence of the bright soliton solution of four variants of the Novikov–Veselov equation with constant and time varying coefficients will be studied. We analyze the solitary wave solutions of the Novikov–Veselov equation in the cases of constant coefficients, time-dependent coefficients and damping term, generalized form, and in 1 + N dimensions with variable coefficients and forcing term. We use the solitary wave ansatz method to derive these solutions. The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Parametric conditions for the existence of the exact solutions are given. The solitary wave ansatz method presents a wider applicability for handling nonlinear wave equations.  相似文献   

19.
Embedded solitons are solitary waves residing inside the continuous spectrum of a wave system. They have been discovered in a wide array of physical situations recently. In this article, we present the first comprehensive theory on the dynamics of embedded solitons and nonlocal solitary waves in the framework of the perturbed fifth-order Korteweg–de Vries (KdV) hierarchy equation. Our method is based on the development of a soliton perturbation theory. By obtaining the analytical formula for the tail amplitudes of nonlocal solitary waves, we demonstrate the existence of single-hump embedded solitons for both Hamiltonian and non-Hamiltonian perturbations. These embedded solitons can be isolated (existing at a unique wave speed) or continuous (existing at all wave speeds). Under small wave speed limit, our results show that the tail amplitudes of nonlocal waves are exponentially small, and the product of the amplitude and cosine of the phase is a constant to leading order. This qualitatively reproduces the previous results on the fifth-order KdV equation obtained by exponential asymptotics techniques. We further study the dynamics of embedded solitons and prove that, under Hamiltonian perturbations, a localized wave initially moving faster than the embedded soliton will asymptotically approach this embedded soliton, whereas a localized wave moving slower than the embedded soliton will decay into radiation. Thus, the embedded soliton is semistable. Under non-Hamiltonian perturbations, stable embedded solitons are found for the first time.  相似文献   

20.
The Korteweg‐de Vries equation, Boussinesq equation, and many other equations can be formally derived as approximate equations for the two‐dimensional water wave problem in the limit of long waves. Here we consider the classical problem concerning the validity of these equations for the water wave problem in an infinitely long canal without surface tension. We prove that the solutions of the water wave problem in the long‐wave limit split up into two wave packets, one moving to the right and one to the left, where each of these wave packets evolves independently as a solution of a Korteweg‐de Vries equation. Our result allows us to describe the nonlinear interaction of solitary waves. © 2000 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号