首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.  相似文献   

2.
In this paper, an adaptive control scheme is proposed for the synchronization of two single-degree-of-freedom oscillators with unknown parameters. We only assume that the master system has the bounded solutions, which is generally satisfied for chaotic systems. Unlike the existing literature, the boundedness of the states of the slave system with control input is not necessarily known in advance. The boundedness of the controlled states is rigorously proved. The unknown parameters not only in the slave system but also in the master system are estimated by designing adaptive laws. By choosing appropriate Lyapunov function and employing Barbalat’s lemma, it is theoretically shown that the synchronization errors can converge to zero asymptotically. Finally, two illustrative examples are provided to demonstrate the effectiveness of the proposed adaptive control design.  相似文献   

3.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

4.
A sliding mode synchronization controller is presented with RBF neural network for two chaotic systems in this paper. The compound disturbance of the synchronization error system consists of nonlinear uncertainties and exterior disturbances of chaotic systems. Based on RBF neural networks, a compound disturbance observer is proposed and the update law of parameters is given to monitor the compound disturbance. The synchronization controller is given based on the output of the compound disturbance observer. The designed controller can make the synchronization error convergent to zero and overcome the disruption of the uncertainty and the exterior disturbance of the system. Finally, an example is given to demonstrate the availability of the proposed synchronization control method.  相似文献   

5.
The unified chaotic system incorporates the behaviors of the Lorenz, the Chen and the Lü chaotic systems. This paper deals with the synchronization of two identical unified chaotic systems where the slave system is assumed to have a single input. A sliding mode controller is proposed to synchronize the two systems. The asymptotic convergence to zero of the errors between the states of the master and the slave systems is shown. Simulations results are presented to illustrate the proposed controller; they indicate that the designed controller is able to synchronize the unified chaotic systems. Also, simulation results show that the proposed control scheme is robust to random bounded disturbances acting on the master system. Moreover, the proposed scheme is applied to the secure communications field, where simulation results indicate that the proposed scheme is effective.  相似文献   

6.
Using the Lyapunov stability theory an adaptive control is proposed for chaos synchronization between two different systems which have stochastically time varying unknown coefficients. The stochastic variations of the coefficients about their unknown mean values are modeled through white Gaussian noise produced by the Weiner process. It is shown that using the proposed adaptive control the mean square of synchronization error converges to an arbitrarily small bound around zero. To demonstrate the effectiveness of the proposed technique, it is applied to the Lorenz–Chen and the Chen–Rossler dynamical systems, as some case studies. Simulation results indicate that the proposed adaptive controller has a high performance in synchronization of chaotic systems in noisy environment.  相似文献   

7.
This paper investigates the problem of trajectory tracking control for quadrotor unmanned aerial vehicle (UAV) in the presence of dynamic obstacles and external disturbance forces/torques. More specifically, two new sliding mode disturbance observers are firstly designed to estimate the external disturbances, in which the observation errors can converge to zero in finite time. Furthermore, utilizing the observation information, a new sliding mode surface-like variable-based position tracking control scheme and a novel nonsingular terminal sliding mode-based attitude synchronization control scheme are developed to drive the UAV tracking the reference trajectory with obstacle avoiding. Moreover, the tracking errors of the close-loop control system can converge to zero within finite time by the analyses of Lyapunov methodology. Finally, the numerical simulation results are presented to illustrate the effectiveness of the proposed control schemes.  相似文献   

8.
In an original impulsive synchronization only instantaneous errors are used to determine the impulsive inputs. To improve the synchronization performance, addition of an integral term of the errors is proposed here. In comparison with the original form, the proposed modification increases the impulse distances which leads to reduction in the control cost as the most important characteristic of the impulsive synchronization technique. It can also decrease the error magnitude in the presence of noise. Sufficient conditions are presented through four theorems for different situations (nominal, uncertain, noisy, and noisy uncertain cases) under which stability of the error dynamics is guaranteed. Results from computer based simulations are provided to illustrate feasibility and effectiveness of the modified impulsive synchronization method applied on Rossler hyperchaotic systems.  相似文献   

9.
This paper deals with the synchronization of two coupled identical chaotic systems with parameter mismatch via using periodically intermittent control. In general, parameter mismatches are considered to have a detrimental effect on the synchronization quality between coupled identical systems: in the case of small parameter mismatches the synchronization error does not decay to zero or even a nonzero mean. Larger values of parameter mismatches can even result in the loss of synchronization. via intermittent control with periodically intervals, we can obtain the weak synchronization. Some sufficient conditions for the stabilization and weak synchronization of a large class of coupled identical chaotic systems will be derived by using Lyapunov stability theory. The analytical results are confirmed by numerical simulations.  相似文献   

10.
A discrete-time adaptive fuzzy control scheme is presented to synchronize model-unknown coupled Henon-map lattices (CHMLs). The proposed method is robust to approximate errors, parameter mismatches and disturbances, because it integrates the merits of the adaptive fuzzy systems and the variable structure control with a sector. The simulation results of synchronization of CHMLs show that it not only can synchronize model-unknown CHMLs but also is robust against parameter mismatches and noise of the systems. These merits are advantageous for engineering realization.  相似文献   

11.
This paper investigates the robust chaos synchronization problem for the four-dimensional energy resource systems. Based on the sliding mode control (SMC) technique, this approach only uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched perturbations, respectively. Numerical simulation results, which fully coincide with theoretical results, are presented to demonstrate the obtained results.  相似文献   

12.
The two-parameter phase space in certain nonlinear system is investigated and the chaotic region of parameters are measured to show its chaotic properties. Within the chaotic parameter region, the complete synchronization, phase synchronization and parameters estimation are discussed in detail by using adaptive synchronization scheme and Lyapunov stability theory. Two changeable gain coefficients are introduced into the controllable positive Lyapunov function and thus the parameter observers. It is found that complete synchronization or phase synchronization occurs with different controllers being used though the parameter observers are the same. Phase synchronization is observed when zero eigenvalue of Jacobi matrix, which is composed of the errors of corresponding variables in the drive and driven chaotic systems. The optimized selection of controllers can induce transition of phase synchronization and complete synchronization.  相似文献   

13.
This paper addresses the design of simple state feedback controllers for synchronization and anti-synchronization of chaotic oscillators under input saturation and disturbance. By employing sector condition, linear matrix inequality (LMI)-based sufficient conditions are derived to design (global or local) controllers for chaos synchronization. The proposed local synchronization strategy guarantees a region of stability in terms of difference between states of the master–slave systems. This region of stability can be enlarged by means of an LMI-based optimization algorithm, through which asymptotic synchronization of chaotic oscillators can be ensured for a large difference in their initial conditions. Further, a novel LMI-based robust control strategy is developed, for local synchronization of input-constrained chaotic oscillators, by providing an upper bound on synchronization error in terms of disturbance and initial conditions of chaotic systems. Moreover, the proposed robust state feedback control methodology is modified to provide an inaugural treatment for robust anti-synchronization of chaotic systems under input saturation and disturbance. The results of the proposed methodologies are verified through numerical simulations for synchronization and anti-synchronization of the master–slave chaotic Chua’s circuits under input saturation.  相似文献   

14.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

15.
Generalizations of the concept of marginal synchronization between chaotic systems, i.e. synchronization with zero largest conditional Lyapunov exponent, are considered. Generalized marginal synchronization in drive–response systems is defined, for which the function between points of attractors of different systems is given up to a constant. Auxiliary system approach is shown to be able to detect this synchronization. Marginal synchronization in mutually coupled systems which can be viewed as drive–response systems with the response system influencing the drive system dynamics is also considered, and an example from solid-state physics is analyzed. Stability of these kinds of synchronization against changes of system parameters and noise is investigated. In drive–response systems generalized marginal synchronization is shown to be rather sensitive to the changes of parameters and may disappear either due to the loss of stability of the response system, or as a result of the blowout bifurcation. Nonlinear coupling of the drive system to the response system can stabilize marginal synchronization.  相似文献   

16.
The passivity theory is used to achieve projective synchronization in coupled partially linear complex‐variable systems with known parameters. By using this theory, the control law is thus adopted to make state vectors asymptotically synchronized up to a desired scaling factor. This paper deals with sending different large messages which include image and voice signals. The theoretical foundation of the projective synchronization based on the passivity theory is exploited for application to secure communications. The numerical simulations of secure communication are used to send large message, an image and sound (voice) signal. The errors are controlled to zero that show the agreement between theoretical and numerical simulations results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.

In this paper, we investigate the modified function projective lag synchronization for two different stochastic chaotic systems using adaptive control method. We design an adaptive controller to make the mean square of synchronization error convergence to an arbitrarily small bound around zero depending on the controller feedback gain according to the Lyapunov stability theory. One example is presented to demonstrate the effectiveness of the proposed controller.

  相似文献   

18.
This article aims to introduce a projective synchronization approach based on adaptive fuzzy control for a class of perturbed uncertain multivariable nonaffine chaotic systems. The fuzzy‐logic systems are employed to approximate online the uncertain functions. A Lyapunov approach is used to design the parameter adaptation laws and to demonstrate the boundedness of all signals of the closed‐loop system as well as the convergence of the synchronization errors to bounded residual sets. Finally, numerical simulation results are presented to verify the feasibility and effectiveness of the proposed synchronization system based on fuzzy adaptive controller. © 2014 Wiley Periodicals, Inc. Complexity 21: 180–192, 2015  相似文献   

19.
We design a quantized sampled-data controller for synchronization of delayed chaotic Lur’e systems. A new approach, extended Wirtinger-inequality-based Lyapunov–Krasovskii functional, is firstly proposed. This approach grasps more sampling information by introducing more free matrices in comparison with some existing methods. Using the system information at the dynamic partitioning point, a zero equality is formulated to fully utilize the inner sampling information. Based on the new approach and zero equality, some novel synchronization criteria are established. In the meantime, the desired quantized sampled-data control gain is obtained with larger sampling period than those in the existing works. Finally, two numerical examples illustrate the merits of the method.  相似文献   

20.
This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号