首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Glasses of the 25Ln2O3-25B2O3-50GeO2 composition (mol%) where Ln = (1 − x − y) La, xEr, yYb, with an addition of Al2O3 have been obtained and their luminescent characteristics examined. Probabilities of spontaneous emission, peak sections of the induced radiation and quantum yields of luminescence corresponding to the 2F5/2 → 2F7/2 transition of Yb3+ ions and the 4I13/2 → 4I15/2 transition of Er3+ ions have been defined. Quantum yield of Yb3+ luminescence for glasses with low Yb2O3 concentration reaches values closed to 100%. The luminescence spectrum of Er3+ ions exhibits a broad peak at about 1530 nm with effective width more than 80 nm when excited by irradiation at λ = 977 nm. Spontaneous emission probability and peak stimulated radiation section for Er3+ luminescence band 4I13/2 → 4I15/2 were determined to be equal to 175 s−1 and 4.9 × 10−21 cm2 respectively. Effective quenching of both rare-earth activators by oscillations with ν ≈ 2630 and 2270 cm−1 was found. These oscillators, most likely, represent OH-groups connected by a hydrogen bond with non-bridging oxygen atoms in the borogermanate matrix.  相似文献   

3.
Glasses in the system x B2O3(1 − x) [y CaO P2O5], (x = 0, 0.1, 0.2, 0.3, y = 2, 2.6, 3, 4, 5) have been prepared by fast quenching of high temperature melts. The presence of B2O3 affected the glass forming ability, allowing the preparation of calcium phosphate glasses with y ? 2.6. The structure of glasses was analyzed by μ-Raman and infrared spectroscopy. The analysis indicated that the glass network is dominated by highly charged species from phosphate tetrahedra with 3 (pyro) or 4 (ortho) NBOs, while the boron atoms are incorporated mainly in 3 coordinated sites in the form of B∅3 or B∅2O units. A small fraction of units was also evident from the spectra analysis of glasses with high CaO content. All calcium borophosphate glasses exhibited bioactivity after soaking in SBF solution within a few days. This was observed by μ-Raman and SEM microscopy, while XRD patterns clearly revealed growth of hydroxyapatite phase. The presence of boron in the glass network has a catalytic effect at favoring bioactivity of the otherwise bioinert calcium phosphate glasses.  相似文献   

4.
Single crystals of gadolinium gallium garnet in which the gallium ions on the octahedral sites were partially substituted by coupled substitution of magnesium and zirconium have been grown using the Czochralski technique. Single crystals of 36 mm in diameter and 100 mm in length corresponding to the formula Gd3Ga5-x-yMgxZryO12 have been obtained from melt compositions in which 0.1 ? x = y ? 0.7. The dislocation and inclusion densities of the single crystals are below 5 cm-2. The lattice parameters increase linearly from 12.382 Å for gadolinium gallium garnet to 12.489 Å for x = y ≈ 0.54. The distribution coefficient increases in this concentration range from Keff = 0.58 to Keff = 0.89. Boules grown from melt compositions in which x = y ? 0.7 appear cloudy through precipitation of Gd2Zr2O7 as a second phase.  相似文献   

5.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

6.
S. Rada  M. Rada  E. Culea 《Journal of Non》2011,357(1):62-66
Glasses in the system xGd2O3(100 − x)[7GeO2·3PbO] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. The influence of gadolinium ions on structural behavior in lead-germanate glasses has been investigated using FTIR, UV-VIS and EPR spectroscopy. The structural changes have been analyzed with increasing rare earth concentration.FTIR data suggest that the glass network modifications has taken place mainly in the germanate part whereas the lead part remained unmodified and its network consists mainly from the [GeO4], [GeO6], [Ge2O7] structural units and with interconnected through Ge-O-Ge bridges in [GeO4] structural units. The changes in amplitude and bandwidth of the UV-VIS bands ranging from 200 nm to 350 nm depend on the content of Gd2O3.By increasing the Gd2O3 content in the glass matrix, the optical band gap energy increases, indicating changes of the lattice parameters and that no non-bridging-oxygens form upon the addition of gadolinium oxide. The decreasing trend has been observed both in optical gap band energy and refractive index of oxide glasses at x = 10 mol% Gd2O3 indicating breaks up the [GeO4] tetrahedral units bonds and create of non-bridging oxygen atoms. For sample with x ≥ 20 mol%, the gadolinium ions having a behavior of network formers (g ≈ 4.8) will coordinate more with the excess of oxygen. Accordingly, the gadolinium ions are generally suspected to improve their environment of network formers.  相似文献   

7.
No biocompatible Ti-based glassy alloys without a harmful element have been reported. We have examined the mechanical and chemical properties of Ti-Pd-Zr-Si glassy alloy in comparison with pure Ti metal and Ti-6Al-4V alloy which have been used so far for biomaterials. The present Ti-Pd base glassy alloys do not contain Al and Ni elements which are considered to be rather toxic. Melt-spun Ti45Zr50−xPdxSi5 glassy alloy ribbons (x = 35, 40, 45) exhibited good bend ductility and had higher Vickers’s hardness and lower Young’s modulus as compared to pure titanium and Ti-6Al-4V alloy. In addition, the Ti45Zr50−xPdxSi5 glassy alloys had higher corrosion resistance and were passivated over a wide range and at the lower passive current density of approximately 10−2 Am−2 than at of pure titanium and Ti-6Al-4V alloy in 1 mass% lactic acid and PBS(−) solutions at 310 K.  相似文献   

8.
Robert Carl 《Journal of Non》2007,353(3):244-249
Glasses with the compositions xNa2O · 10MgO · (90 − x)SiO2, 10Na2O · xMgO · (90 − x)SiO2, 5Na2O · 15MgO · xAl2O3 · (80 − x)SiO2, xNa2O · 10MgO · 10Al2O3 · (80 − x)SiO2, 10Na2O · 10MgO · xAl2O3 · (80 − x)SiO2, 10Na2O · 5MgO · 10Al2O3 · (80 − x)SiO2 were melted and studied using UV-vis-NIR spectroscopy in the wavenumber range from 5000 to 30 000 cm−1. At [Al2O3] > [Na2O], the UV-cut off is strongly shifted to smaller wavenumbers and the NIR peak at around 10 000 cm−1 attributed to Fe2+ in sixfold coordination gets narrower. Furthermore, the intensity of the NIR peak at 5500 cm−1 increases. This is explained by the incorporation of iron in the respective glass structures.  相似文献   

9.
The glasses with the compositions of 21.25RE2O3-63.75MoO3-15B2O3 (RE: Sm, Gd, Dy) were prepared and the formation of β′-RE2(MoO4)3 ferroelectrics was confirmed in the crystallized glasses obtained through a conventional crystallization in an electric furnace. The features of the glass structure and crystallization behavior were clarified from measurements of Raman scattering spectra. Continuous-wave Nd:YAG laser with a wavelength of 1064 nm (laser power: 0.6-0.9 W, laser scanning speed: S = 1-16 μm/s) was irradiated to 10.625Sm2O3-10.625Gd2O3 (or Dy2O3)-63.75MoO3-15B2O3 glasses, and the structural modification was induced at the glass surface. At the scanning speed of S = 10 μm/s, crystal lines consisting of β′-Gd2−xSmx(MoO4)3 or β′-Dy2−xSmx(MoO4)3 crystals were patterned on the glass surface. It was found that those crystal lines have the surface morphology with periodic bumps. At S = 1 μm/s, it was found that crystal lines consist of the mixture of paraelectric α-Gd2−xSmx(MoO4)3 and ferroelectric β′-Gd2−xSmx(MoO4)3 crystals, indicating the phase transformation from the β′ phase to the α phase during laser irradiation. Homogeneous crystal lines with β′-RE2(MoO4)3 ferroelectrics have not been written in this study, but further research is continuing.  相似文献   

10.
S. Rada  E. Culea 《Journal of Non》2011,357(7):1724-1728
Glasses in the quaternary system 0.05Al2O3·0.95[xGd2O3·(100-x)(7GeO2·3PbO)] with 0 ≤ x ≤ 40 mol% have been prepared from melt quenching method. In this paper, we investigated structural and optical properties in gadolinium-alumino-lead-germanate glasses through investigations of FTIR (Fourier-Transform Infrared Spectroscopy) and UV-VIS (Ultra-Violet) spectroscopy.The observations presented in these mechanisms show that by increasing Gd2O3 content up to 40 mol%, the glass network modification has taken place mainly in the germanate part, while the excess of oxygen can be accommodated in the host network by the creation of shorter rings of [Ge2O7] structural units and the formation of [AlO4] structural units. The affinity pronounced of the gadolinium cations towards germanate structural units produces the formation of the Gd2Ge2O7 crystalline phase.The UV-VIS spectroscopy data show the charge transfer transitions of Pb+ 2-O− 2, Al+ 3-O− 2 and Gd+ 3-O− 2, respectively. The additional absorption in the range of 300 to 600 nm was attributed to other types of defects such as: non-bridging oxygen ions, change in valency of ions and other color centers.The values of the direct optical band gap of the glasses are determined from the optical absorption spectra. By increasing Gd2O3 content in the glass matrix, the optical band gap energy increases indicating changes of the lattice parameters by Gd2O3 incorporation.  相似文献   

11.
Spectrometric and ellipsometric studies of (1 − x)TiO2 · xLn2O3 (Ln = Nd, Sm, Gd, Er, Yb; x = 0.33, 0.5) thin films at room temperature were performed. The obtained dispersion dependences of refractive indices are successfully described by the optical-refractometric relation. The dependence of optical pseudogap and refractive indices on composition and molar mass of the films is investigated. The influence of compositional disordering on the energy width of the exponential absorption edge is studied.  相似文献   

12.
Calcium aluminosilicate and calcium fluoro-aluminosilicate glasses have been characterized by 29Si, 27Al and 19F MAS-NMR. The two calcium aluminosilicate glasses examined were based on the composition 2SiO2 · Al2O3 · 2CaO (ART1) and the mineral anorthite 2SiO2 · Al2O3 · CaO (ART2). The observed chemical shifts for 29Si and 27Al agreed with previous studies. The fluorine containing glasses were based on 2SiO2 · Al2O3 · (2−X)CaO · XCaF2. The 29Si chemical shift moved in a negative direction with increase fluorine content indicating a progressive reduction in the average number of non-bridging oxygens, NBO, attached to a silicon. The 27Al spectra indicated the presence of four coordinate aluminium in the glasses with X=0.0-0.75, but aluminium was present in Al(IV), Al(V) and Al(VI) coordination states in the highest fluorine content glass with X=1.0. The 19F spectra indicated the presence of F-Ca(n) in low fluorine content glasses and both F-Ca(n) and Al-F-Ca(n) in high fluorine content glasses. We speculate here that the Al-F-Ca(n) species are oxyfluorides [AlOxFy]n, where x=1-6, y=1-6 and n is the charge on the total complex when aluminium is in Al(IV), Al(V) and Al(VI) coordinate states. The reduction in the average number of NBO per silicon with increasing fluorine content is explained by fluorine converting Ca2+ to F-Ca(n).  相似文献   

13.
xNaVO3 · yNaPO3 · (1 − y)NaBO2 glasses were prepared where x = 0.0, 0.05, 0.5 and 0 ? y ? 1. These glasses have been investigated with multinuclear MAS NMR. 51V NMR spectra show that two vanadate configurations are possible, assigned as four and five coordinated vanadium. The concentration of the latter group decreases upon addition of sodium-borate. The presence of four and three coordinated boron sites can be deduced from the 11B NMR spectra. The latter boron sites appear only when borate groups are connected to each other. 31P NMR spectra of borophosphates and borovanadophosphates show that the ratio of pyro- and metaphosphates is greater in the glasses containing vanadate than in simple borophosphates. These results indicate phosphate to be the most acidic agent and therefore the best chain-terminating group in these glasses.  相似文献   

14.
We report the structural and optical properties of wurtzite-structure Zn(Mg,Cd)O ternary alloys. Wurtzite (0 0 0 1) Zn1−xCdxO and MgyZn1−yO films were grown on (11–20) sapphire substrates using remote-plasma-enhanced metalorganic chemical vapor deposition. The large bowing parameters of Zn1−xCdxO and MgyZn1−yO ternary alloys are 3.0 and 3.5, respectively, which reflects the large difference of each binary’s electronegativity. We have analyzed the broadening of photoluminescence (PL) in Zn(Mg,Cd)O alloys on alloy content by taking into account the statistical alloy fluctuation and the localization of the exciton, and have clarified that the localization of the exciton strongly affects to PL full-width at half-maximum (FWHM) in Zn(Mg,Cd)O alloys. The alloy broadenings in steady-state PL of Zn(Mg,Cd)O alloys are in good agreement with the calculated tendency by the theoretical model based on the statistical alloy fluctuation, while PL FWHM of Zn1−xCdxO is three times larger than the calculated results. Moreover, as another way to confirm alloy broadening, we also have done time-resolved PL measurements and derived the localized depth of the exciton in ZnO-based system, indicating a good agreement with the tendency of PL FWHM broadening.  相似文献   

15.
This paper describes elastic properties and spectroscopic studies on the xPbO-50B2O3-(50 - x)V2O5 (where x = 20, 25, 30, 35, 40, 45 and 49 mol%) glass system. Elastic moduli and spectroscopic parameters exhibit compositional dependent trends and the existence of characteristic borovanadate groups in these glasses. The bulk modulus and shear modulus increase with the concentration of [BO4/2] and [B2V2O9]2− groups, which increases the dimensionality of the network. The scheme of modification of borate and vanadate groups has been explained by considering the Sanderson’s electronegativity principle. Analysis of infrared(IR) and magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectra suggests the presence of characteristic diborovanadate groups also in these glasses. The results are examined in view of the structural groups formed due to the presence of PbO as a modifier.  相似文献   

16.
Glasses with the basic compositions 10Na2O · 10CaO · xAl2O3 · (80 − x)SiO2 (x=0, 5, 15, 25) and 16Na2O · 10CaO · xAl2O3 · (74 − x)SiO2 (x=0, 5, 10, 15, 20) doped with 0.25-0.5 mol% SnO2 were studied using square-wave-voltammetry at temperatures in the range from 1000 to 1600 °C. The voltammograms exhibit a maximum which increases linearly with increasing temperature. With increasing alumina concentration and decreasing Na2O concentration the peak potentials get more negative. Mössbauer spectra showed two signals attributed to Sn2+ and Sn4+. Increasing alumina concentrations did not affect the isomer shift of Sn2+; however, they led to increasing quadrupole splitting, while in the case of Sn4+ both isomer shift and quadrupole splitting increased. A structural model is proposed which explains the effect of the composition on both the peak potentials and the Mössbauer parameters.  相似文献   

17.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

18.
P. Bharathan 《Journal of Non》2011,357(18):3366-3372
We have experimentally measured the current-voltage and capacitance-voltage characteristics of Au/amorphous AsxSe1 − x (x ≤ 0.05)/Zr trilayer structures at temperatures from 4 to 295 K. The observed capacitance of structures with an amorphous AsxSe1 − x (a-AsxSe1 − x) thickness of ~ 0.4 to ~ 2.8 μm does not significantly change over the entire range of applied bias (− 5 V to 5 V), indicating that the a-AsxSe1 − x films are fully depleted and thus the structures are Mott barriers. The current-voltage (I-V) characteristics of the a-As0.03Se0.97 device at low (< 3000 V/cm) to moderate fields (3000 V/cm-10000 V/cm) follow the predictions of trap limited space charge conduction theory, as they exhibit Ohmic behavior at low fields and trap limited space charge current at moderate fields. According to the trap limited space charge current model of Lampert, the a-As0.03Se0.97 film has an effective hole mobility, Θμ (with Θ < 1), of ~ 5 × 10− 7 cm2/V-sec at 295 K. This value is similar to, but consistently lower than previously reported mobilities inferred from time of flight measurements. The current at high fields (> 104 V/cm) increases rapidly with applied field as a result of carrier emission from localized states and is consistent with transport by the Poole-Frenkel mechanism. A permanent transition to a high conductance state (~ 10− 3 S) is observed after exposure to very high electric fields (~ 4 × 105V/cm).  相似文献   

19.
Glasses in the system 40(P2O5)-x(B2O3)-(60 − x)(Na2O) (10 ? x ? 30 mol%) have been prepared by the melt-quenching technique. Thermal properties were studied using differential thermal analysis and the relationship between composition and thermal stability was obtained. Structural characterization was achieved by a combination of experimental data (infrared and Raman spectroscopy, 11B and 31P solid state NMR). In particular, variations in the phosphate network structure upon addition of B2O3 and Na2O were investigated. Analysis of the data indicates that with increasing B2O3 content and decreasing Na2O, the glass network shows increasing levels of cross-linking between phosphate and borate units. Evidence of direct B-O-P bonds was observed. In the compositional range investigated, borate groups contain boron almost exclusively in four-fold coordination.  相似文献   

20.
A series of new glasses of 70TeO2-(20 − x) ZnO-xPbO − 5La2O3-2.5K2O-2.5Na2O (mol%) doped with Yb3+ is presented. Thermal stability, spectra and laser properties of Yb3+ ions have been measured. It found that 70TeO2-15PbO-5ZnO-5La2O3-2.5K2O-2.5Na2O composition glass had fine stability ((TxTg)>190 °C), high-stimulated emission cross-section of 1.25 pm2 for the 2F5/2 → 2F7/2 transition and existed measured fluorescence lifetime of 0.94 ms and the broad fluorescence effective linewidth of 72 nm. Evaluated from the good potential laser parameters, this system glass is excellent for short pulse generation in diode pumped lasers, short pulse generation tunable lasers, high-peak power and high-average power lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号