首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Jian Zhu  Ke Zhu  Liang Chen 《Journal of Non》2006,352(2):150-154
Fluorescence spectra of gold colloid containing samarium ions have been recorded and analyzed at room temperature. For gold colloids, two fluorescence emission peaks are observed at 443 nm and 745 nm, respectively when the corresponding excitation wavelength is fixed at 595 nm. When amount of Sm3+ are added to gold colloids, the up-conversion emission peak at 443 nm increased greatly. Furthermore, increasing the gold colloids addition leads to the up-conversion luminescent intensity increases in the early stage and then decreased. We believe the enhanced up-conversion are due to the energy transferred from the fluorescence from gold nanoparticles to Sm3+, and make the excited state absorption (ESA) in Sm3+ takes place.  相似文献   

2.
Copper oxidation states, structure and properties of xCuO · (50-x)PbO · 50B2O3 glasses were investigated. Both infrared (IR) and 11B magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies were employed to determine the tetrahedral BO4 fraction in the glasses as a function of CuO content. IR study indicates that the replacement of Pb2+ by Cu2+ ions increases the BO3 units by converting BO4- containing groups into ring type metaborate groups. The oxidation states of copper ions in the glasses have been studied using both X-ray photoelectron spectroscopy (XPS) and the wet chemical method. For high CuO containing (?30 mol%) glasses, high Cu+ ion concentrations (Cu+/Cutot.>0.3) result in a relatively slow disproportionation of B4-containing groups because of the small coordination number of Cu+ compared to Cu2+ ions. Effects of both glass structure and redox states of copper ions on glass properties including density, Vickers’ hardness, coefficient of thermal expansion, and chemical durability have been discussed.  相似文献   

3.
《Journal of Non》2006,352(38-39):4062-4068
Glasses with the base composition 16Na2O · 10CaO · 74SiO2 doped with copper and iron or copper and manganese were studied by high temperature UV–vis–NIR spectroscopy. The spectra exhibited distinct absorption bands attributed to the respective transition metal ions present (Cu2+, Fe2+, Fe3+, Mn3+). In glasses doped with only one polyvalent element, the absorption decreases linearly with increasing temperature, the absorption bands are shifted to smaller wave numbers and get broader. In glasses doped with two types of transition metals, the situation is the same up to a temperature of around 550 °C. At larger temperature, the Cu2+-absorption in glasses also co-doped with iron increases again, while in glasses doped with both copper and manganese the absorption is approximately the same as in glasses solely doped with copper. It is shown that this is due to redox reactions between polyvalent species. These reactions are frozen in at temperatures <550 °C.  相似文献   

4.
High-purity silica plates were implanted with 2 MeV Cu+ ions at various ion fluences: 0.7 × 1016, 3 × 1016 and 6 × 1016 ions/cm2. After implantation, thermal treatments were performed at 400 °C and 900 °C in either an oxidizing (air) or a reducing (50% H2 + 50% N2) atmosphere for 1 h. All the samples were studied by electron paramagnetic resonance, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy (HRTEM), Rutherford backscattering spectrometry and optical absorption. The advantages of the reducing atmosphere (RA) over the oxidizing atmosphere (OA) are clearly observed. When annealed in a RA, the surface plasmon resonance is more intense and a narrower size distribution of the Cu nanoparticles is obtained. The existence of CuO nanoparticles was confirmed by HRTEM, and while both annealing atmospheres favor the formation of CuO nanoparticles, this process is strengthened when the sample is annealed in an OA.  相似文献   

5.
X.C. Yang  L.L. Li  M. Huang  J.F. Zhao  J.W. Hou 《Journal of Non》2011,357(11-13):2306-2308
Ag–Cu bimetallic nanoparticle/silicate glass composites were fabricated by means of a two-step ion-exchange and subsequently thermal treatment. Optical absorption spectroscopy and transmission electron microscopy (TEM) were used to study the influence of preparation conditions on the formation of Ag–Cu bimetallic nanoparticles in silicate glass. The results show that the volume fraction of copper nanoparticles increases with ion-exchange duration when keeping the same annealing temperature and duration in hydrogen atmosphere during the first stage of Cu doped glass. The Cu doped glass is beneficial to the formation of Ag nanoparticles during subsequent Ag+ for Na+ ion exchange. Extending Cu+ for Na+ ion exchange duration makes against the introduction of Ag ions into the Cu doped glass and the formation of Ag nanoparticles in the glass matrix. A few Cu2O nanoparticles were found in the glass matrix due to the oxidization of small Cu nanoparticles.  相似文献   

6.
M. Elisa  B. Sava  A. Diaconu  D. Ursu  R. Patrascu 《Journal of Non》2009,355(37-42):1877-1879
The paper presents a study based on luminescence characteristics of phosphate glasses containing Cu2+, Mn4+ and Sb3+. The glass samples obtained by a wet chemical route belong to Li2O–BaO–Al2O3–La2O3–P2O5 oxide system. The oxide composition of the glass samples is calculated to obtain a vitreous network composed of metaphosphate chains bonded by modifier ions (Li+, Ba2+ and La3+) and fluorescent ions. The absorption spectra of the samples were acquired in the UV domain in order to establish the excitation wavelength for each fluorescent ion. The absorption peaks of Sb3+ ion are ranged at 285 nm and 250 nm, Mn2+ ion at 280 nm and 365 nm, Cu2+ ion at 295 nm and 313 nm. The luminescence peaks of Cu2+, Mn4+ and Sb3+ ions are found in the visible domain at different wavelengths, depending on the oxidation state and coordination symmetry of each fluorescent ion. The fluorescence of Sb3+ ion has a strong signal at 450 nm and a weak one at 465 nm, Mn2+ ion shows a fluorescence peak at 600 nm and the pair Cu2+/Cu+ ions reveals a fluorescence emission at 460 nm.  相似文献   

7.
The thermodynamics of the redox equilibrium of Cu+/Cu2+ were determined by square-wave voltammetry in glass melts with the base mol% compositions x Na2O · (100 − x) SiO2 (x = 15, 20, 26 and 33) and (26 − x) Na2O · x CaO · 74 SiO2 (x = 0, 5, 10 and 15) doped with 1 mol% CuO in the temperature range from 850 to 1150 °C. All recorded voltammograms showed two maxima attributed to the reductions of Cu2+ to Cu+ and Cu+ to metallic copper. Both peaks are shifted to smaller potentials with decreasing temperature. With increasing melt basicity, the [Cu+]/[Cu2+]-ratio first increases, and remains constant for optical basicities >0.56. The effect of composition on the redox equilibrium is explained by the incorporation of both Cu+ and Cu2+ in octahedral coordination into the melt structure.  相似文献   

8.
This paper reports on the study of the effects of silver (Ago) nanoparticles on the optical and spectroscopic properties of Er3+-doped silica-based gels and glasses, including active bulk materials and planar waveguides for integrated optics. Two different procedures for silver and erbium ion incorporation into the glassy matrices have been investigated: the direct incorporation of a metal salt (AgNO3 and/or Er(NO3)3) into the sol-gel solution, as well as a modified sol-gel process, based on pore-doping of a precursor gel with AgNO3 and/or Er(NO3)3 solutions. The study of the parameters determining the average size and size distribution of the nanoparticles, together with their influence on the sol-gel material densification and Er3+ photoluminescence at 1.5 μm, has been performed by means of transmission electron microscopy, plus ultra-violet/visible and photoluminescence spectroscopies. The Ago colloidal nanoparticles, obtained by thermal precipitation, were approximately spherical, homogeneously distributed and they exhibited an average size between ∼2 and 15 nm, depending on the silver content and heat treatment performed. They are shown to be responsible for a remarkable enhancement of the Er3+ photoluminescence intensity, which is mainly due to the increase of the local electric field around the Er3+ ions, due to the surface plasmon resonance of the Ago nanoparticles.  相似文献   

9.
In this work, we have prepared a sol-gel derived hybrid material directly doped with Er1.4Yb0.6(Benzoate)6(Phen)2 (Phen = 1,10-phenanthroline) complex, which was reported with intramolecular Yb-Er energy-transfer process in our previous work. The infrared (IR) spectra of the pure complex and hybrid gel material were investigated. The NIR photoluminescence (PL) spectrum of hybrid gel material shows strong characteristic emission of Er3+ with broad full width at half-maximum (FWHM) of 70 nm. Judd-Ofelt theory was used in order to analyze the optical properties of Er3+ ions in the hybrid gel material.  相似文献   

10.
We have produced silica-gel compacts doped with 2,5-Bis(benzoxazol-2-yl)-4-methoxyphenol dye using high-pressure processing of powders synthesized by the sol-gel technique. The high-pressure compaction of powders with three different dye concentrations was done at 4.5 GPa and room temperature. We have measured optical and mechanical properties of the obtained compacts. They were very stable, transparent, crack free, hard (3.56 ± 0.07 GPa) and dense (1.95 ± 0.03 g/cm3), being resistant to polishing and leaching, which enables its use in optical applications. The Stokes shift observed was higher than 100 nm indicating that the intramolecular proton-transfer in the electronically excited state (ESIPT) of this dye is maintained, even in an OH rich environment like silica. A shift to higher wavelength in the fluorescence spectra of the compacts, attributed to the increasing in the conjugation of the π system, was observed.  相似文献   

11.
Brushite, CaHPO4·2H2O, has been precipitated at 25 °C in the presence of Mg2+, Ba2+ or Cu2+ at concentrations up to 0.5 mM. When initial pH is sufficiently low to exclude nanocrystalline apatite as the initial solid phase, overall crystal growth rate may be determined from simple mass crystallization by recording pH as function of time. A combination of surface nucleation (birth-and-spread) and spiral (BCF) growth was found. Edge free energy was determined from the former contribution and was found to be a linear function of chemical potential of the additive, indicating constant adsorption over a wide range of additive concentrations. Average distances between adsorbed additive ions as calculated from slopes of plots are compatible with lattice parameters of brushite: 0.54 nm for Mg2+, 0.43 nm for Ba2+ and 0.86 nm for Cu2+. With the latter a sharp decrease in growth rate occurred early in the crystallization process, followed by an equally sharp increase to the previous level. When interpreted in terms of the Cabrera–Vermilyea theory of crystal growth inhibition, the results are consistent with an average distance between Cu ions of 0.88 nm, in perfect agreement with the above value.  相似文献   

12.
The high quality Cu3Se2 phase of copper selenide nanoparticles was synthesized through the solution-phase chemical reaction between copper and selenium. In this synthesis process, hydrazine hydrate acts as reducing agent whereas ethylene glycol controls the nucleation and growth of particles. An effort has been made to explain the growth mechanism to form copper selenide nanoparticles through the coordination of selenium to the Cu2+ complexes with OH groups of ethylene glycol. Result indicates the formation of Cu3Se2 single phase nanoparticles. The particles with the average particle size 25 nm are spherical in shape having tetragonal structure. The particles are well crystallized having 94% degree of crystallinity. An effort has also been made to determine the energy band gap of copper selenide nanoparticles through the absorption spectra.  相似文献   

13.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

14.
Copper and cerium oxides doped titania samples, as well as silica-titania samples were prepared through sol-gel process by using titanium butoxyde as precursor. The obtained samples were characterized by X-ray diffractometry and scanning electron microscopy. The main objective of the proposed study is to promote the stabilization of anatase phase at high temperatures. The obtained experimental results show that cerium doped titania samples stabilizes the anatase phase until 800 °C, whereas copper doped samples calcinated at the same temperature are a mixture of anatase and rutile phases. So, CeO2 is a better stabilizer for anatase phase than CuO. On the other hand, based on previously reported data it can be concluded that both, CeO2 and CuO are better stabilizers for anatase phase than SnO2. It is also verified that the total amount of silica in the titania-silica double oxide increases the temperature required for crystallization, and as a consequence, the anatase phase is stabilized at higher temperatures i.e. up to 1200 °C.  相似文献   

15.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

16.
Erbium doped tin-silicate samples were prepared by sol-gel method. Optical absorption, infrared photoluminescence at 1.5 μm from 4I13/2-4I15/2 Er3+ electronic transition and data of refractive index change after exposure to 266 nm pulsed radiation were collected. The results show that Er-doped tin-silicate can be produced by the proposed sol-gel method with photosensitivity comparable to that of only tin-doped silica, showing refractive index changes up to 4×10−4.  相似文献   

17.
Coumarin 1 (C1) dye is impregnated in transparent sol-gel glass samples prepared by sol-gel process using three methods - (I) using HCl as catalyst and glycerol as a drying control chemical additive (DCCA), (II) using HCl as catalyst at 60 °C subsequent drying at room temperature, and (III) using HCl as catalyst at 60 °C and heated at 600 °C for 3 h. The sol-gel matrices prepared by Methods I and II are given dip treatment with methanol/distilled water (50/50 volume) for 16 h before dipping into dye solution. The effect of method and drying time of matrix on spectroscopic properties of C1 dye doped glass samples has been studied. The optical density (OD) at absorption maximum wavelength and fluorescence intensity (FI) at fluorescence maximum wavelength of all C1 dye doped samples prepared by Methods I and II decrease, where as there is no change in photophysical properties (OD/FI) is observed in samples prepared by Method III with the time of drying of the sol-gel samples. These absorption/fluorescence properties of C1 dye in sol-gel glass matrices are compared with its respective properties in methanolic solution in acidic environment.  相似文献   

18.
In this paper, optical properties of 75TeO2-20ZnO-5Na2O host glass doped with concentration of Tm3+ up to 10 %mol were studied in order to assess the most suitable rare earth content for short cavity fiber lasers. Raman spectroscopy revealed a change in the glass structure while increasing Tm3+ content, similar to the well known addition of alkali ions in a glass. Influence of the fabrication process on the OH content was determined by FTIR measurements. Refractive index of Tm3+ doped tellurite glasses was measured at five different wavelengths ranging from 533 nm to 1533 nm. Lifetime and emission spectra measurements of the Tm3+ doped tellurite glasses are reported.  相似文献   

19.
In this paper we investigate the energy transfer processes in Tm3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength ∼800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified. A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at ∼660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er1(4I11/2) + Er2(4I13/2) → Er1(4I15/2) + Er2(4F9/2) to the process. Energy migration among pumped 4I9/2 level reducing the efficiency of the upconversion emission rate (3H11/2, 4S3/2, and 4F9/2) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported.  相似文献   

20.
The optical properties of Cr3+ ions in lithium metasilicate (Li2O · SiO2) transparent glass-ceramics were investigated. The main crystalline phase precipitated was the lithium metasilicate (Li2O · SiO2) crystal. The percent crystallinity and crystalline size were ranging 65-75% and 20-35 nm, respectively. The color changes drastically to deep pink from emerald green upon crystallization. New and strong absorption bands appeared and the absorption intensity increases by about 10 times that in glass. These new absorption bands are found to be derived from Cr3+ ions in octahedral sites in the lithium metasilicate crystal lattice. Cr3+ ions substitute for three Li+ ions and occupy the distorted octahedral site between single [SiO4]n chains of lithium metasilicate crystal. The ligand field parameters can be estimated: 10Dq = 13 088 cm−1, B = 453 cm−1, Dq/B = 2.89 and C = 2036 cm−1. The near-infrared luminescence centered at 1250 nm was not detected in the deep pink glass-ceramics unlike emerald green glass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号