首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Masato Noguchi 《Journal of Non》2011,357(15):2966-2969
Copper nanoparticles were formed by photoirradiation of doped sol-gel silica, which was prepared by mixing Cu2+ ions, ethylenediaminetetraacetic acid (EDTA), and riboflavin into sol-gel solutions of tetramethoxysilane. The doped silica exhibited broad absorption bands at 442 nm due to riboflavin and 740 nm due to Cu2+-EDTA complexes. After photoirradiation, the sol-gel silica showed a reddish brown color and the absorption peak around 580 nm due to the plasmon band of copper nanoparticles. Copper nanoparticles were also formed from other sol-gel silica doped with lumichrome or lumiflavin. The photostability of the flavins dyes obtained from the fluorescence intensities was in the order of lumichrome > lumiflavin > riboflavin in the sol-gel silica without Cu2+ ions. On the other hand, the fluorescence intensities were considerably reduced by photoirradiation of the sol-gel silica doped with Cu2+ ions, irrespective of the flavin dyes doped. Considering the absorption and fluorescence spectral changes during the photoirradiation, we concluded that copper nanoparticles are produced by the photoinduced electron transfer from the flavin dyes in the sol-gel silica.  相似文献   

2.
Incorporation of metal alkoxides (Ti, Zr, etc.) for tuning the optical properties of silica glasses by the sol-gel process is of significant interest for optical applications. In this paper, we report an anhydrous sol-gel process for preparation of photosensitive titania-doped hybrid glassy polymer with good homogeneity and high doping concentration (TiO2 up to 40 mol%). The process consists of two steps: in the first step methacryloxypropyltrimethoxysilane (MPS) is hydrolyzed by boric acid through ligand exchange reaction (OH↔OR) under anhydrous conditions; and in the second step dimethyldimethoxysilane (DMDMS), diphenyldimethoxysilane (DPhDMS) and titanium ethoxide (TET) were added to condense with the silanols formed in the first step. The optical properties of the synthesized hybrid polymer were studied, and results showed that the hybrid material has low OH absorption, low optical losses (0.45 dB/cm at 1550 nm and 0.16 dB/cm at 1310 nm respectively), and good thermo-optical linearity with tuneable refractive index. The effect of TiO2 doping in reducing the OH concentration of the hybrid material was observed, and the mechanism for this effect is discussed.  相似文献   

3.
Qian-huo Chen 《Journal of Non》2007,353(4):374-378
A sort of decorated nano ZnO organic sols have been successively prepared by pulsed laser ablation at the interface of ZnO target and a flowing liquid containing polymers. It is found that the decorated nano ZnO ethanol sols, the decorated nano ZnO-PS (polystyrene) cyclohexane sols and the decorated nano ZnO-PMMA (polymethyl methacrylate) ethyl butyrate sols all have strong fluorescence emission at 329 nm and 411 nm, 308 nm and 317 nm, and at 330 nm and 400 nm, respectively. The results show the decorating for nano ZnO will intensely affect their luminescence, and the wavelength and intensity of luminescence can be adjusted or controlled by the different decoration.  相似文献   

4.
Ching-Chung Chen 《Journal of Non》2008,354(32):3828-3835
In this research, bi-layer thin film stacks that served as an antireflective coating were developed. The top layer was synthesized using tetraethoxysilane and 3-(trimethoxysilyl) propyl methacrylate by the well-known sol-gel technique. Its refractive index was lower than that of the bottom layer, which was prepared by reaction between tetrabutoxyltitanium and γ-glycidoxy propyl trimethoxysilane. Antireflective coatings were obtained by spin-coating of the synthesized sols on a glass substrate, followed by pre-drying, UV-curing, and post-baking. Fourier transform infrared spectrometer was employed to investigate the evolution of chemical bonds during the UV-curing and the sol-gel processes. The size of the inorganic/organic hybrid particles in the sol was found to be less than 10 nm, as measured by transmission electron microscope and dynamic light scattering. Thermo gravimetric analyzer was used to find out the thermal degradation temperature of the two layers and the effect of post-baking. The results indicated that the thermal stability increased after post-baking at 200 °C for 15 min. The reflectance of the antireflection coating was controlled by the relative refractive indices and the thickness of the top and bottom layers. Under optimal synthesis condition, we obtained an antireflection coating, exhibiting a low reflection, 1% at 550 nm, in the visible range.  相似文献   

5.
Amorphous and polycrystalline (Pb0.76Ca0.24)TiO3 (PCT) thin films deposited on an Si(1 0 0) substrate have been prepared by a simple sol-gel process. The microstructure and surface morphologies of the thin films have been studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The polycrystalline PCT film on the Si(1 0 0) substrate has a tetragonal perovskite structure with grain size from 60 to 110 nm. AFM reveals smooth surfaces and root mean square (rms) roughness of 0.17 and 4.4 nm for amorphous and polycrystalline films, respectively. The refractive index n and extinction coefficient k of the amorphous and polycrystalline thin films was obtained by spectroscopic ellipsometry as a function of the photon energy in the range from 2.0 to 5.4 eV. The maximum n and direct bandgap energies of amorphous and polycrystalline thin films were 2.66 and 4.11 eV, 2.64 and 3.84 eV, respectively.  相似文献   

6.
Ultralow density silica aerogels prepared with PEDS   总被引:1,自引:0,他引:1  
Xu Chao  Shen Jun  Zhou Bin 《Journal of Non》2009,355(8):492-780
This paper deals with the synthesis of ultralow density silica aerogels using polyethoxydisiloxanes (PEDS) as the precursor via sol-gel process followed by supercritical drying using ethanol solvent extraction. Ultralow density silica aerogels with 5 mg/cc of density were made for the molar ratio by this method. A remarkable reduction in the gelation time was observed by the effect of the catalyst NH4OH at room temperature. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is about several nm. The specific surface area of the silica aerogel is 339 m2/g and the specific surface area, pore volume and average pore diameter decrease with increasing density of the silica aerogel.  相似文献   

7.
Using sol-gel method, mesoporous and photoluminescent silica nanocomposites of soluble starch have been synthesized and characterized. Different ratios of H2O, TEOS and EtOH were used at fixed template (soluble starch) and catalyst (NH4OH) concentrations to obtain materials of different performances in terms of heavy metal binding from a solution which has been monitored using Cd(II) as representative divalent heavy metal ion. Optimum material was obtained when H2O, TEOS and EtOH were used in 14:1:2 ratio. This sample was not only an efficient metal ion adsorbent but also had an intense luminescence in ultra-violet region and potentially may be used in silicon-based UV-emitting devices. Metal binding by the material was further enhanced after calcination (at 800 °C in air) while its luminescence had a multipeak profile in UV-visible region. In a batch adsorption study, calcined hybrid composite (0.25 g/L) could remove 98.5% Cd(II) from 100 mg/L Cd(II) solution in 2 h. The chemical, structural and textural characteristics of the synthesized materials have been investigated using Fourier Transform Infrared Spectroscopy (FTIR), X-rays Diffraction (XRD), Thermal Analysis (TGA/DTA), Photoluminescence (PL), Brunauer-Emmett-Teller Analysis (BET) and Scanning Electron Microscopy (SEM).  相似文献   

8.
Liquid 29Si NMR spectroscopy was used to investigate the sol-gel process of methacryloxypropyltrimethoxysilane. This hybrid precursor was involved in the realization of optical elements in laminated crack-free thick films (up to 100 μm), through spatially controlled photopolymerization. Understanding the formation of the inorganic network was of first importance to insure the creation of crack-free photopatterned thick films in a laminated configuration. Material preparation required evaporation of the volatile solvents released during the sol-gel process and limitation of the condensation degree. Both conditions were achieved by a drying process at room temperature. The structure and the composition of the sols were investigated and compared to non-dried sols. Evolution of inorganic species distribution was also studied under increasing aging time or storage temperature. NMR peak fitting of T1 species gave fruitful information on the sol structure evolution during the sol-gel process. It pointed out the presence of a large variety of oligomers in the sol. The study also allowed the identification of more constraint cyclic species in dried sols stored at room temperature. Their amount significantly decreased when increasing the storage temperature and was attributed to ring opening of cyclic species. Consequently, the structure of the dried sol will depend both of the aging time and of the storage temperature. All these results have to be taken into account when the degree of condensation has to be limited to achieved photopatternable hybrid layers for specific optical applications.  相似文献   

9.
B. Canut  V. Teodorescu 《Journal of Non》2007,353(27):2646-2653
The sol-gel dip coating technique has been used to deposit composite oxide films (NiO)x(SiO2)1−x with x = 0.1 on silicon wafers. Single and multilayer coatings allowed a variation of the film thickness from 70 to 400 nm. Film morphology, atomic structure and atomic composition have been investigated by transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS). The local environment of the Ni atoms was characterized by extended X-ray absorption fine structure (EXAFS). The samples were studied in the as-prepared state and after annealing in H2 at 600 °C for 1 h. The structural and chemical state evolution of clusters present inside the silica matrix is discussed in terms of out-of-equilibrium reaction processes specific to low-dimensional objects and superficial effects.  相似文献   

10.
Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the sol-gel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm and were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with acryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure as well as an excellent optical transmission of above 90% in the visible region and an enhanced surface smoothness of around 1 nm RMS roughness. They likewise exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. Lastly and most importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.  相似文献   

11.
The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3ω technique. Deposition processes for depositing the 3ω testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa.  相似文献   

12.
We have produced silica-gel compacts doped with 2,5-Bis(benzoxazol-2-yl)-4-methoxyphenol dye using high-pressure processing of powders synthesized by the sol-gel technique. The high-pressure compaction of powders with three different dye concentrations was done at 4.5 GPa and room temperature. We have measured optical and mechanical properties of the obtained compacts. They were very stable, transparent, crack free, hard (3.56 ± 0.07 GPa) and dense (1.95 ± 0.03 g/cm3), being resistant to polishing and leaching, which enables its use in optical applications. The Stokes shift observed was higher than 100 nm indicating that the intramolecular proton-transfer in the electronically excited state (ESIPT) of this dye is maintained, even in an OH rich environment like silica. A shift to higher wavelength in the fluorescence spectra of the compacts, attributed to the increasing in the conjugation of the π system, was observed.  相似文献   

13.
Chun-Wei Hsu 《Journal of Non》2008,354(34):4037-4042
A sol-gel method has been used to fabricate a cholesterol MIP for application in polar solutions. In this study, (cholesteryl propylcarbamate)triethoxysilane and tetraethyl orthosilicate were used as the hydrophobic monomer and crosslinker, respectively. The MIP had a larger pore volume when formation of the polymer was catalyzed at a higher pH than when it was formed at lower pH values, with the pore diameters being 3.5 nm and 2 nm, respectively for materials formed at high and low pH values. Both of these pore volumes were greater than those found for the respective control polymers formed without template. However, only the polymers formed at low pH values showed an imprinting effect. Compared with other methods explored, the sol-gel procedure gave only a small amount of non-specific binding for both the MIP and NIP when synthesized at low pH values. The largest imprinting-induced promotion of binding (IPB) value of the MIP (13 650%) was obtained with [HCl] = 0.01 M in the sol-gel solution. The MIP showed high selectivity towards cholesterol in comparison with other steroid hormones, and also to a lesser extent recognized vitamin D3 in methanol solution containing 5 vol.% water.  相似文献   

14.
Tin oxide (SnO2) thin films were deposited on UV fused silica (UVFS) substrates using filtered vacuum arc deposition (FVAD). During deposition, the substrates were at room temperature (RT). As-deposited films were annealed at 400 and 600 °C in Ar for 30 min. The film structure, composition, and surface morphology were determined as function of the annealing temperature using X-ray diffraction (XRD), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The XRD patterns of the SnO2 thin films deposited on substrates at RT indicated that the films were amorphous, however, after the annealing the film structure became polycrystalline. The grain size of the annealed films, obtained from the XRD analysis, increased with the annealing temperature, and it was in the range 8-34 nm. The AFM analysis of the surface revealed an increase in the film surface average grain size from 15 nm to 46 nm, and the surface roughness from 0.2 to 1.8 nm, as function of the annealing temperature. The average optical transmission of the films in the visible spectrum was >80%, and increased by the annealing ∼10%. The films’ optical constants in the 250-989 nm wavelength range were determined by variable angle spectroscopic ellipsometry (VASE). The refractive indexes of as-deposited and annealed films were in the range 1.83-2.23 and 1.85-2.3, respectively. The extinction coefficients, k(λ), of as-deposited and annealed films were in the range same range ∼0-0.5. The optical energy band gap (Eg), as determined by the dependence of the absorption coefficient on the photon energy at short wavelengths, increased with the annealing temperature from 3.90 to 4.35 eV. The lowest electrical resistivity of the as-deposited tin oxide films was 7.8 × 10−3 Ω cm, however, film annealing resulted in highly resistive films.  相似文献   

15.
ZnO nanoparticles as small as 80 nm were successfully synthesized using a modified vapor phase transport (VPT) process at substrate temperatures as low as 222 °C. Particle size distribution and morphology were characterized by scanning electron microscopy and atomic force microscopy. Energy dispersive X-ray spectroscopy and X-ray diffraction indicate the synthesis of high quality crystalline ZnO structures. Low temperature (4.2 K) photoluminescence (PL) spectroscopy was used to characterize the optical quality of the nanoparticles. Ultraviolet emission and a nanostructure specific feature at 3.366 eV are strong in the PL spectra. The 3.366 eV feature is observed to predominate the spectrum with decrease in particle size. This size effect corroborates the luminescence as a nanostructure-specific surface related exciton feature as previously speculated in the literature. In addition, self-assembled ZnO mesoparticles (>100 nm) were realized by increasing the growth time. Low growth temperatures of the particles allow for their potential utilization in flexible organic hybrid optoelectronics. However, this work focuses mainly on the modified synthesis and optical characterization of nanoparticles.  相似文献   

16.
Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current–voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 106 Ω cm for the non-doped films up to 102 Ω cm for the films prepared with the highest doping concentration.  相似文献   

17.
This work demonstrates a promising method to fabricate 2D lattices by using photosensitive sol-gel method combining with four-beam of a 350.7 nm Kr ion laser interference. Photosensitive TiO2 gel films with chelate complexes as precursors are fabricated. The characteristics of UV and IR spectra of the films and their variations in the process of laser irradiation are investigated. The results show that the gel films had an absorption peak at about 358 nm due to the formation of chelate complex. This peak gradually decreases with irradiation in time, which indicates the photosensitive properties of the TiO2 films. A flexible four-beam interference system is proposed. Given incident angles 20.5° and 44.5°, the lattices with pitch of 700 nm and 326 nm are fabricated, respectively. The diffraction phenomenon of the 700 nm lattices is investigated by inverse method. The results are fully consistent with the 2D crystal diffraction theory.  相似文献   

18.
Synthetic lamellar silica and hybrid lamellar silicas have been prepared by liquid crystal templating, template extraction and silanization. The samples have been characterized by thermogravimetric analysis (TGA), carbon analysis, spectroscopy, X-ray diffraction (XRD) and nitrogen adsorption. The XRD analyses have shown that the lamellar periodic stacking is preserved for all samples. The quantity and type of organic molecules at the silica surface have been evaluated by carbon analysis, TGA and spectroscopy. The covalent grafting of the solvent used for extraction of the initial surfactant has been highlighted by these analyses. The nitrogen adsorption analyses have revealed three categories of pores and two types of samples. The initial lamellar silica exhibits a very low specific surface area and plate-like type of pores. The second type of samples is made up of the hybrid samples and the initial substrate from whom the surfactant has been extracted. These samples show a significantly higher specific surface area with interlamellar spaces corresponding to narrow-slit like mesopores around 4 nm. The nitrogen adsorption data analysis has highlighted the presence of micropores within the silica sheets. The difference of the specific surface is due to pore blocking by the surfactant impeding the access to nitrogen into interlamellar spaces and by the silanes covering the pores once the surface modified. The presence of micro and mesopores combined to a high BET specific surface of 612 m²/g makes these lamellar silicas interesting materials for catalysis applications.  相似文献   

19.
Synthesis of silver nanoparticles in silica aerogel matrix by sub-critical drying technique is reported in the present article. Physical characterization of silver/silica aerogel nanocomposites with 1, 5 and 25 wt% of silver has been discussed. Physico-optical properties of the composites have been evaluated as a function of the silver particle size crystallized within the silica matrix. The maximum size of the silver grains that could be accommodated in the amorphous matrix was observed to be 25 nm. Silver particles of diameter larger than 25 nm were found segregated out of the silica matrix; such silver particles were single crystalline with dendritic morphology. Optical absorption analysis confirmed the presence of both the oligomeric and nanometallic silver in the samples heat-treated up to 500 °C. With decreasing silver particle size, the surface plasmon resonance was found first to shift towards blue followed then by a red shift. The blue shift is attributed to the chemisorption occurring between the metallic core and the silica matrix. With larger grain size of 25-80 nm in 25 wt% Ag-silica aerogel sample, the diffuseness of electron cloud outside the potential well was observed to cause a red shift in the surface plasmon resonance.  相似文献   

20.
Fluorinated nanoporous silica (denoted as SiO2:F) thin films with low dielectric constant were prepared by a sol-gel method and spin coating technique. The leakage current densities of the SiO2:F thin films were 10−8 and 3 × 10−6 A/cm2 respectively for the as-deposited films and for those subjected to annealing at a temperature of 450 °C. These currents are more than one order of magnitude lower than those of the common SiO2 films. Photoluminescent results showed strong blue-light emission and a small blue shift in the SiO2:F films that were related to the increment of the porosity. The dielectric properties were also characterized and the k value of the annealed SiO2:F film was found to be about 1.67. The hole size in the films is small and the size distribution is uniform for the annealed SiO2:F samples due to the effects of fluorination. The underlying mechanism for fluorination is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号