首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pb(PO3)2-TeO2 glasses in the whole range of glass composition were first obtained and their properties (refractive index, density, Tg and light scattering losses) were determined. Based on the vibrational spectroscopy data a new approach was applied to investigate the interactions of initial oxides in melts resulted in so-called constant stoichiometry groupings (CSGs) formation symbolizing intermediate range order in glasses. Vibrational spectra of glasses are interpreted as a superposition of unchangeable spectral forms (principal spectral components (PSCs)) belonging to CSGs: PbO · P2O5, TeO2 · 2PbO · 2P2O5, TeO2 · PbO · P2O5, TeO2, and possibly 2TeO2 · PbO · P2O5 and 6TeO2 · PbO · P2O5. In this work Multivariate Data Analysis has been applied as the independent mathematical tool to decompose Raman spectra of glasses and reveal the number of PSCs. It is shown that application of factor analysis results in the same five PSCs that confirms our data obtained from the CSG concept. This concept allows also the prediction of the existence of unknown compounds, and correspondingly some crystals (TeO2⋅ 2PbO⋅2P2O5 and others) were revealed by XRPD of the crystallized glasses. The CSG concept opens the way for elaboration of low scattering glasses as candidates for Raman amplifiers. It is shown that Pb(PO3)2-TeO2 glasses with small content of TeO2 are of interest to photonic technology.  相似文献   

2.
New phosphate glasses of the quaternary system A2O-Nb2O5-WO3-P2O5, where X = Li and Na were prepared by the melt-quenching method. The introduction of WO3 in the glass composition was based on the proposal of analysing the effect of the diminishing of the molar amount of the alkaline oxide and thus decreasing the molar ratio between network modifiers and network formers (M/F).In the present work we present the preparation of 20A2O-30WO3-10Nb2O5-40P2O5 (A = Li, Na) transparent glasses. These glasses were heat-treated in air, at 550 °C and 650 °C for 4 h. The structure of the obtained samples was studied by X-ray powder diffraction (XRD) and Raman spectroscopy and the morphology by scanning electron microscopy (SEM). The dc (σdc), ac (σac) conductivity and dielectric spectroscopy measurements were performed in the function of the temperature and were related with the structural changes of the glass structures.  相似文献   

3.
N. Baizura 《Journal of Non》2011,357(15):2810-2815
Tellurite 75TeO2-(10 − x)Nb2O5-15ZnO-(x)Er2O3; (x = 0.0-2.5 mol%) glass system with concurrent reduction of Nb2O5 and Er2O3 addition have been prepared by melt-quenching method. Elastic properties together with structural properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo-overlap technique at 5 MHz and Fourier Transform Infrared (FTIR) spectroscopy, respectively. Shear velocity, shear modulus, Young's modulus and Debye temperature were observed to initially decrease at x = 0.5 mol% but remained constant between x = 1.0 mol% to x = 2.0 mol%, before increasing back with Er2O3 addition at x = 2.5 mol%. The initial drop in shear velocity and related elastic moduli observed at x = 0.5 mol% were suggested to be due to weakening of glass network rigidity as a result of increase in non-bridging oxygen (NBO) ions as a consequence of Nb2O5 reduction. The near constant values of shear velocity, elastic moduli, Debye temperature, hardness and Poisson's ratio between x = 0.5 mol% to x = 2.0 mol% were suggested to be due to competition between bridging oxygen (BO) and NBO ions in the glass network as Er2O3 gradually compensated for Nb2O5. Further addition of Er2O3 (x > 2.0 mol%) seems to further reduce NBO leading to improved rigidity of the glass network causing a large increase of ultrasonic velocity (vL and vS) and related elastic moduli at x = 2.5 mol%. FTIR analysis on NbO6 octahedral, TeO4 trigonal bipyramid (tbp) and TeO3 trigonal pyramid (tp) absorption peaks confirmed the initial formation of NBO ions at x = 0.5 mol% followed by NBO/BO competition at x = 0.5-2.0 mol%. Appearance of ZnO4 tetrahedra and increase in intensity of TeO4 tbp absorption peaks at x = 2.0 mol% and x = 2.5 mol% indicate increase in formation of BO.  相似文献   

4.
Glass formation in Li2O-Nb2O5-GeO2 (LNG) system, the structure and crystallization behavior of glasses that have compositions near the ratio Li2O/Nb2O5 ∼ 1 corresponding to stoichiometry of ferroelectric phase LiNbO3 were examined by differential thermal analysis, X-ray diffraction, small-angle neutron scattering and second harmonic generation (SHG). LNG glasses were subjected to heat treatments at temperatures in the range between Tg and temperature of the first exothermic peak in order to initiate nonlinear optical activity by nanoheterogeneity formation. Transparent nanostructured glasses with second-order optical nonlinearity were obtained for compositions characterized by the Li2O/Nb2O5 molar ratio ranging from 0.83 to 1.2 and GeO2 40-45 mol%. As prolonged heat treatments of nanostructured glasses result in crystallization of ferroelectric LiNbO3 the origin of SHG in transparent LNG glasses is supposed to be connected predominantly with polarity of nanoheterogeneities formed at the initial stage of phase separation.  相似文献   

5.
Specimens of the glassy system: (70 − x)TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by the melt-quenching. An ultrasonic pulse-echo technique was employed, at 5 MHz, for measuring: the ultrasonic attenuation, longitudinal and shear wave velocities, elastic moduli, Poisson ratio, Debye temperature and hardness of the present glasses. It is found that the gradual replacement of TeO2 by Li2O in the glass matrix up to 30 mol% leads to decrease the average crosslink density and rigidity of prepared samples which affects the properties, i.e., the hardness, ultrasonic wave velocities and elastic moduli are decreased, while the Poisson ratio and the ultrasonic attenuation are increased. Also, optical absorption spectra were recorded in the range, 200-800 nm for these glasses. The obtained results showed that a gradual shift in the fundamental absorption edge toward longer wavelengths occurred. Values of both of the optical energy gap, Eopt, and width tails, ΔE, are determined. It is observed that Eopt is decreased and ΔE increased with the increase of Li2O in the glass matrix up to 30 mol%. The compositional dependences of the above properties are discussed and correlated to the structure of tested glasses.  相似文献   

6.
Glasses in the ternary ZnO-P2O5-TeO2 system were prepared and studied in two compositional series (100 − x)[0.5ZnO-0.5P2O5]-xTeO2 (X-series) and 50ZnO-(50 − y)P2O5-yTeO2 (Y-series) within the concentration range of x = 0-60 and y = 0-40 mol% TeO2. Their structure was studied by Raman and 31P MAS NMR spectroscopies. The incorporation of TeOx units into the structural network is associated with the depolymerisation of phosphate chain structure as revealed by both methods. At a high TeO2 content isolated PO4 tetrahedra are formed in the structure of glass series Y, while diphosphate O3P-O-PO3 groups are present in the structure of the glass series X. In the structure of glass series Y tellurium atoms form predominantly TeO3 trigonal pyramids, whereas in the X glass series TeO4 trigonal bipyramids prevail in the glass structure. The addition of TeO2 to the parent zinc metaphosphate glass results in a decrease of glass transition temperature in both compositional series associated with the replacement of stronger P―O bonds by weaker Te―O bonds.  相似文献   

7.
Glasses of the system: (70−x) TeO2 + 15B2O3 + 15P2O5 + xLi2O, where x = 5, 10, 15, 20, 25 and 30 mol% were prepared by melt quench technique. Dependencies of their glass transition temperatures (Tg) and infrared (IR) absorption spectra on composition were investigated. It is found that the gradual replacement of oxides, TeO2 by Li2O, decreases the glass transition temperature and increases the fragility of the glasses. Also, IR spectra revealed broad weak and strong absorption bands in the investigated range of wave numbers from 4000 to 400 cm−1. These bands were assigned to their corresponding bond modes of vibration with relation to the glass structure.  相似文献   

8.
This work studied the properties of glasses with the molar composition 63.8SiO2-(11.6-x)Na2O-(0.7 + x)B2O3-19.2CaO-3MgO-1.5Al2O3-0.2P2O5, in which x = 0, 1, 2, 3. These glasses are of interest for the development of slowly dissolving fibers to be incorporated in composites for medical applications. The thermal properties were recorded using hot stage microscopy, differential thermal analysis, and heat treatments in the range of 800°-1000 °C. The glass crystallization behavior was determined based on calculated values of the activation energy of crystallization and the Johnson-Mehl-Avrami exponent. The structural units in the glass network were identified using infrared spectroscopy. Finally, in vitro dissolution was tested in SBF solution.The addition of B2O3 increased the glass transition temperature and reduced the working temperature. When heat treated at 900 °C, the glass with the smallest amount of B2O3 formed two crystalline phases: magnesium silicate MgSiO3 and wollastonite CaSiO3. In the other compositions, only CaSiO3 was observed after heat treatment at 950 °C. All the glasses crystallized preferentially from the surface. Changes in the liquidus and crystallization temperatures were related to changes in the glass structure. The formation of [BO3] units led to glasses with improved resistance to crystallization and decreased liquidus temperature. In the glasses with 2.7 and 3.7 mol% B2O3, [BO3] units were transformed into [BO4] units. The formation of [BO4] led to an increase in fragility and a decrease in resistance to crystallization. All the glasses dissolved slowly in simulated body fluid.  相似文献   

9.
In this work, new glass compositions in the TeO2-GeO2-Nb2O5-K2O system have been prepared and studied. The germanotellurite glasses were prepared by melt-quenching and their density, refractive index and characteristic temperatures have been determined. The structure of these glasses has been studied by infrared and Raman spectroscopies.The progressive replacement of TeO2 by GeO2 led to an increase of the glass transition and crystallisation temperatures of the glasses and a simultaneous decrease of their density and refractive index. Typical density and refractive index values of these glasses ranged from 4.98 to 3.85 g cm− 3 and 2.08 to 1.79, respectively, with increasing GeO2 content. The infrared spectra are dominated by a band ~ 640 cm− 1 in the tellurite glass and ~ 800 cm− 1 in the germanate glass. The Raman spectra of the germanotellurite glasses present an intense boson peak between ~ 34 and 47 cm− 1, together with high frequency peaks at ~ 670 cm− 1 and ~ 470 cm− 1 for high tellurite and high germanate glass compositions, respectively. The vibrational spectra of these germanotellurite glasses indicate that the glass network consists basically of TeO4 and [TeO3]/[TeO3 + 1] units, mixed with GeO4 and NbO6 polyhedra.  相似文献   

10.
In this paper we describe fabrication and characterization of rare-earth-doped active tellurite glasses to be used as active laser media for fiber lasers emitting in the 2 μm region. The base composition is (mol%): 75TeO2-20ZnO-5Na2O with different concentrations of Tm3+, Yb3+ and Ho3+ as dopants or co-dopants. Optical properties of doped glasses were studied and pumping at 800 nm and at 980 nm were tested in order to compare the efficiency of two pumping mechanisms. Optical characterization carried out on glasses containing only Tm3+ ions indicated the optimum concentration of Tm2O3 in terms of emission efficiency as 1 wt%. The addition of 5 wt% of Yb2O3 to Tm3+-doped glasses led to the best results in terms of intensity of fluorescence emission and of lifetime values. Yb and Ho co-doped Tm-tellurite glass was measured in emission.  相似文献   

11.
Bing Zhang  Li Song  Fengzhen Hou 《Journal of Non》2008,354(18):1948-1954
Glasses in the ternary system ZnO-Sb2O3-P2O5 were investigated as potential alternatives to lead based glasses for low temperature applications. The glass-forming region of ZnO-Sb2O3-P2O5 system has been determined. Structure and properties of the glasses with the composition (60 − x)ZnO-xSb2O3-40P2O5 were characterized by infrared spectra (IR), differential thermal analysis (DTA) and X-ray diffraction (XRD). The results of IR indicated the role of Sb3+ as participant in glass network structure, which was supported by the monotonic and remarkable increase of density (ρ) and molar volume (VM) with increasing Sb2O3 content. Glass transition temperature (Tg) and thermal stability decreased, and coefficient of thermal expansion (α) increased with the substitution of Sb2O3 for ZnO in the range of 0-50 mol%. XRD pattern of the heat treated glass containing 30 mol% Sb2O3 indicated that the structure of antimony-phosphate becomes dominant. The improved water durability of these glasses is consistent with the replacement of easily hydrated phosphate chains by corrosion resistant P-O-Sb bonds. The glasses containing ?30 mol% Sb2O3 possess lower Tg (<400 °C) and better water durability, which could be alternatives to lead based glasses for practical applications with further composition improvement.  相似文献   

12.
Glasses based on (85 − x)TeO2-xZnF2-12PbO-3Nb2O5 (x = 0-40) system have been studied for the first time for fabricating mid-infrared optical fiber lasers. The thermal and optical properties including UV-Vis, Raman as well as FTIR spectra are reported. It is demonstrated that increasing the ZnF2 concentration to 30 mol% significantly increased the thermal stability of the glass. Adding ZnF2 also reduced the hydroxyl (OH) content of the glass resulting in lower optical absorption in the mid-infrared region, which is crucial for infrared laser applications. The glass absorption cut-off edge near 400 nm blue-shifts with increasing ZnF2 addition. Raman spectra show a depolymerization of the glass network with increasing transformation of TeO3+1 to TeO3 structures.  相似文献   

13.
Effects of boron addition on the glass forming characteristics, structure and properties of iron phosphate glasses with nominal compositions of xB2O3-(40−x)Fe2O3-60P2O5 (x = 2-20, mol%) and xB2O3-(100−x)[Fe2O3-60P2O5] (x = 2-20, mol%) have been investigated by DTA, XRD, IR and Mössbauer spectroscopy. Although there were some weak local surface crystallizations on especially most of the glasses in group B, all of the compositions formed glass. DTA spectra showed two exothermic peaks corresponding to crystallizations along with an endothermic glass transition peak. Tg increased with increasing B2O3 content for the glasses in the first series which indicates that the addition of B2O3 increases the thermal stability of glasses in this series while the opposite is observed in the second series. The dissolution rates of boron containing bulk glasses were found to be around 10−9 gr/cm2 min which are comparable to that of the base iron phosphate glass. When the B2O3 content was above 14%, new bands related to BO4 tetrahedral groups have been observed in the IR spectra. The Mössbauer isomer shift values of boron doped glasses were found to be a little lower than that of base glass but both iron ions had distorted octahedral coordination in all glasses. The fraction of Fe2+ ions in glasses (Fe2+/∑(Fe2+ + Fe3+)) was found to be 23% for the base glass while it was 10-22% for the boron doped glasses.  相似文献   

14.
A series of new glasses of 70TeO2-(20 − x) ZnO-xPbO − 5La2O3-2.5K2O-2.5Na2O (mol%) doped with Yb3+ is presented. Thermal stability, spectra and laser properties of Yb3+ ions have been measured. It found that 70TeO2-15PbO-5ZnO-5La2O3-2.5K2O-2.5Na2O composition glass had fine stability ((TxTg)>190 °C), high-stimulated emission cross-section of 1.25 pm2 for the 2F5/2 → 2F7/2 transition and existed measured fluorescence lifetime of 0.94 ms and the broad fluorescence effective linewidth of 72 nm. Evaluated from the good potential laser parameters, this system glass is excellent for short pulse generation in diode pumped lasers, short pulse generation tunable lasers, high-peak power and high-average power lasers.  相似文献   

15.
A detailed study on a novel TeO2-BaO-SrO-Ta2O5 glass system developed for photonic device applications is reported in this paper. The glass transition and crystallization temperatures could be selected by varying the Ta2O5 content in this glass system. This glass system is found to have good thermal stability among tellurite glasses. Raman spectroscopy has been used as a tool to analyze the structural details of this technologically important glass system. In addition to the TeO4 trigonal bipyramid and TeO3 trigonal pyramid structural units, glasses in this system revealed the presence of an additional Raman band attributed to TaO6 octahedra. The Raman bandwidth of the present glasses are broader compared to the conventional tellurite glasses by 35%. The influence of a gradual addition of the modifier oxides on the coordination geometry of tellurium atoms has been elucidated. Unlike the other tellurite glasses, even at higher modifier concentrations the TeO4 structural units dominate in the glass network compared to TeO3 trigonal pyramids. The ratio of TeO4/TeO3 structural units was discussed for different series of glass compositions.  相似文献   

16.
G. Upender 《Journal of Non》2011,357(3):903-909
Infrared, EPR and optical absorption studies on (90-x)TeO2-10GeO2-xWO3 (7.5 ≤ x ≤ 30) glasses containing Cu2+ spin probe have been carried out. The Infrared spectral studies show that the structure of glass network consists of [TeO4], [TeO3]/[TeO3 + 1], [WO4], [WO6] and [GeO6] units in the disordered manner. Physical parameters such as density (ρ), molar volume (Vm), oxygen packing density (OPD), oxygen molar volume (Vo), optical basicity (Λ), oxide ion polarizability (αO2−), inter ionic distances and the concentration of ions per unit volume of Te, Ge, W, Cu and O have been determined. The spin-Hamiltonian parameters (g||, g and A||) of Cu2+ ions in the present glasses have been estimated from EPR spectra at 300 K. Bonding parameters such as α2, β12, β2, Γσ, and Γπ have been calculated from both optical absorption and EPR data. The observed variations in spin-Hamiltonian parameters and bonding parameters have been correlated to the structural modifications due to the WO3 incorporation into the TeO2 glass network at constant 10 mol% GeO2 content.  相似文献   

17.
I. Dyamant  E. Korin 《Journal of Non》2008,354(27):3135-3141
Glasses in the La2O3−CaO−B2O3 ternary system were studied. The glass forming range as determined by the appearance of the annealed cast was found to match previously published findings. Clear glasses were formed in the composition range of 5.7−19.1 mol% La2O3 with constant B2O3 content of 71.4 mol%, and in glasses of constant La2O3:CaO ratio of 1:4 with B2O3 content in the range of 71.4-55.0 mol%. The non-linear optical crystalline phase La2Ca2B10O19 was crystallized from the clear glasses after heat treatments, as determined by powder XRD. Two types of the LaBO3 crystalline phases were detected in the partially and the fully crystallized glass compositions outside the glass forming range. Data are reported for the glass transition temperature (Tg), dilatometric softening point (Td), linear coefficient of expansion (α), onset crystallization temperature (Tx), exothermal peak temperature (TP), density (ρ) and index of refraction (nD) in the clear glasses.  相似文献   

18.
Glasses of the system: xBi2O3-(100−x)B2O3 (x = 20 to 66 mol%) were prepared and characterized by density, DSC, UV-visible absorption and 11B MAS-NMR spectroscopy. Glass molar volume increases while the glass transition temperature decreases with Bi2O3 concentration. Densities of some bismuth borate glasses are found to be greater or very close to those of single crystal phases with equal composition. B11 MAS-NMR studies determined that the fraction of tetrahedrally coordinated borons (N4) is maximum at 42 mol% of Bi2O3 and that there is a local maxima in N4 at Bi2O3 concentration of 50 mol%. Glasses containing Bi2O3 concentration of 33 mol% and higher show an unusual, intense absorption band just below the optical band gap. Two crystalline phases: Bi3B5O12 and Bi4B2O9 were prepared by devitrification of glasses and characterized by X-ray diffraction, FTIR and 11B MAS-NMR studies. Both crystalline phases contained significantly lower N4 than glasses with equal composition.  相似文献   

19.
Tomoharu Hasegawa 《Journal of Non》2011,357(15):2857-4499
Glasses of the Bi2O3-TeO2-B2O3 ternary system were developed and their linear and nonlinear optical properties were investigated. The absorption edges of these glasses were found to be 367-384 nm with a good transmittance in visible wavelength, although they exhibit the refractive indices as high as 1.98-2.12 at 633 nm. The absorption edges are quite steep and they are analyzed by the Urbach theory. The obtained Urbach energies of these glasses are 73-79 meV which are comparable to silica glasses. The high refractive index and its glass composition dependency are discussed according to the basics of the electronic polarizability and optical basicity. The high third order nonlinear susceptibility χ(3) = 2.0 × 10− 12 esu at 800 nm was also obtained in the 36Bi2O3-18TeO2-46B2O3 glass.  相似文献   

20.
This study was explored in series of the optical, thermal, and structure properties based on 60P2O5-10Al2O3-30ZnO (PAZ) glasses system that doped with varied rare-earth (RE) elements Yb2O3/Er2O3. The glass transition temperature, softening temperature and chemical durability were increased with RE-doping concentrations increasing, whereas thermal expansion coefficient was decreased. In the optical properties, the absorption and emission intensities also increase with RE-doping concentrations increasing, When Er2O3 and Yb2O3 concentrations are over than 3 mol% in the Er3+-doped PAZ system and Yb3+-doped concentration is over than 3 mol% for Er3+/Yb3+-codoped PAZ system, the emission intensity significantly decreases presumably due to concentration quenching, formation of the ions clustering, and OH groups in the glasses network. It is suggested that the maximum emission cross-section (σe) is 7.64 × 10− 21 cm2 at 1535 nm is observed for 3 mol% Er3+-doped PAZ glasses. Moreover, the maximum σe × full-width-at-half-maximum is 327.8 for 5 mol% Er3+-doped PAZ glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号