首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Suspension of micrometer-sized 1,4-bis(4-methylstyryl)benzene(p-MSB) was converted into colloidal nanocrystal solution by irradiation with an femtosecond laser(800 nm, 1 kHz). The prepared nanocrystals were rectangular with ca. 100 nm in size. The same crystal structure as that of bulk crystals was confirmed by X-ray diffraction measurement. UV-Vis spectra and emission spectra of the nanoparticle dispersions in dichloromethane(poor solvent) were examined. The nanocrystal exhibits large quantum yield(89%). The nonlinear optical properties of the nanocrystals were further studied by Z-scan technique with femtosecond laser duration of 120 fs at a wavelength of 800 nm. The results show that the nanocrystals exhibit strong nonlinear absorption.  相似文献   

2.
Gold nanoparticles with an average diameter of approximately 8 nm (Au approximately 15,000) were irradiated with a tightly focused pulse laser at 355 nm in an aqueous solution of sodium dodecyl sulfate (SDS). Transient absorption spectra of the solution were measured at 25-100 ns after the laser irradiation. The observed transient absorption around 720 nm is assignable to the 2p <-- 1s transition of solvated electrons produced via multiple ionization of the gold nanoparticles. The nascent charge state of the gold nanoparticles was estimated from the transient absorbance. The dependence of the charge state on the SDS concentration shows a gradual increase from approximately +60 to approximately +70 in the 2 x 10(-4) to 3 x 10(-4) M range and an abrupt increase up to approximately +710 at the critical micelle concentration (CMC) of SDS, 8 x 10(-3) M. TEM measurements after laser irradiation reveal that the gold nanoparticles fragment into Au(approximately 1000) at a SDS concentration of 3 x 10(-4) M, whereas they are significantly dissociated into Au(approximately 100) above the CMC. The observed correlation between the nascent charge states and the extent of size reduction of the gold nanoparticles after the laser treatment indicates that the size reduction is caused by the Coulomb explosion of the highly charged gold nanoparticles. The mechanism of laser-induced size reduction is quantitatively discussed based on the liquid drop model.  相似文献   

3.
通过射频磁控溅射方法制备了嵌入在无定型氧化钛基体中的Ag纳米颗粒膜, 研究了Ag纳米颗粒的大小、形状、吸收光谱及Ag的结合能在800 nm皮秒激光照射后的变化规律. 透射电子显微镜观察结果显示, 光照后Ag纳米颗粒尺寸减小, 形状变得更圆. 吸收光谱结果表明, 光照后样品在586-1200 nm 范围的吸收减小, 在350-586 nm范围的吸收增加. 光照后样品的光致发光强度大大增强, 这主要来自光氧化生成的Ag2O.  相似文献   

4.
The size of gold nanoparticle aggregates was controlled by manipulating the interparticle interaction. To manipulate the interparticle interaction of gold nanoparticles prepared by citrate reduction, we applied the substitutive adsorption of benzyl mercaptan on the particle surface in the absence of the cross-linking effect. Various experimental techniques such as UV-vis absorption spectroscopy, surface-enhanced Raman scattering, quasi-elastic light scattering, and zeta-potential measurement were used to characterize the nanoparticle aggregates. Our results suggest that the replacement of the trivalent citrate ions adsorbed on the nanoparticle surface with monovalent benzyl mercaptan ions should destabilize the particles, causing aggregation and hence the increase in the size of nanoparticle aggregates. These experimental results were successfully rationalized by the classical DLVO (Derjaguin-Landau-Vervey-Overbeek) theory that describes the interparticle interaction and colloidal stability in solution. Our findings suggest that the control of surface potential is crucial in the design of stable gold nanoparticle aggregates.  相似文献   

5.
We have developed a colloidal assembly for the study of plasmon–plasmon interactions between gold nanoparticles. Colloidal aggregates of controlled size and interparticle spacing were synthesized on silica nanoparticle substrates. Following the immobilization of isolated gold nanoparticles onto silica nanoparticles, the surfaces of the adsorbed gold nanoparticles were functionalized with 4-aminobenzenethiol. This molecular linker attached additional gold nanoparticles to the ‘parent' gold nanoparticle, forming small nanoparticle aggregates. The optical absorption spectrum of these clusters differed from that of gold colloid in a manner consistent with plasmon–plasmon interactions between the gold nanoparticles.  相似文献   

6.
The electronic absorption spectra and optical-limiting (OL) properties of gold nanoparticle (AuNP) aggregates induced by KCl and NaCl have been investigated using 4.1-ns laser pulses at 532 nm. Although the individual AuNP colloid shows no optical-limiting effect, the AuNP aggregates exhibit significant optical-limiting characteristics. With an increased concentration of KCl and NaCl, the surface plasmon resonance (SPR) band shifts to a longer wavelength, and the optical-limiting performance is enhanced. Both the electronic absorption and optical limiting are influenced by the particle size. The larger the individual nanoparticle, the further red-shifted the SPR band and the stronger the optical limiting. Optical limiting of aggregates induced by KCl is stronger than that of aggregates induced by NaCl. Mechanistic studies reveal that free-carrier absorption is the dominant contributor to the optical limiting, with negligible contribution from nonlinear scattering.  相似文献   

7.
Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input.  相似文献   

8.
Silver nanoparticles (Ag-NP) on silica were produced in aqueous solution by deposition of silver on colloidal silica in a small cuvette using radiation from a xenon-mercury lamp. Ag-NP were also synthesized on a much larger scale with low-level, long-term visible light irradiation for several months. In both cases, the nanoparticle production was monitored by the appearance of the surface plasmon resonance (SPR) band at around 410 nm. The growth of the nanoparticles was directly related to the time exposed to radiation, which could be tracked spectrophotometrically over time. We also investigated the possibilities of rapid nanoparticle production without the assistance of radiation though silver oxide by adding alkali hydroxide, which is a relatively unexplored approach for syntheses of Ag-NP on silica. The SPR absorption of Ag-NP was used as a tool in evaluating the size and shape of the resulting nanoparticles along with dynamic light scattering and transmission electron microscopy data. In order to better utilize and understand Ag-NP, we present various ways to control their production through initial concentration adjustments, irradiation effects, gravitational fractionation, sonication and silver oxide formation.  相似文献   

9.
液相脉冲激光烧蚀法制备高熔点的纳米金属粒子   总被引:1,自引:0,他引:1  
采用液相脉冲激光烧蚀法成功地制备了高熔点的金属Pt、Ru与Ag纳米粒子. 采用SEM、TEM、ED和紫外-可见吸收光谱表征了纳米粒子的特征. 纳米粒子的粒径基本在数个到数十个纳米的大小范围内. 发现含适量PVP(poly(vinylpyrrolidone))的水溶液有利于纳米粒子的制备, 而且还能够提高纳米粒子悬浮液的稳定性. 该制备方法较简单, 在制备高熔点的纳米金属粒子方面有着其它方法所不能比拟的优势.  相似文献   

10.
选择一种高活性模板剂通过简单的诱导组装工艺, 合成了结构均一有序的硫化汞一维纳米组装链, 该纳米链由直径约为30 nm的粒子组装而成, 长度约0.6-1.0 μm. 通过XRD、TEM、FT-IR、UV-Vis光谱等手段对产物结构进行了表征. UV-Vis实验结果发现, 产物具有良好的紫外吸收性能. 产物对荧光素具有灵敏的荧光猝灭效应, 预计在微观修饰、纳米器件、样品检测等领域具有潜在的应用价值. 同时还对产物的形成机理做了初步探讨.  相似文献   

11.
Liquid phase gold nanoparticles with different diameters and colors can be prepared using sodium citrate reduction method by controlling the amounts of sodium citrate. The mean diameters of gold nanoparticles are measured by transmission electron microscope (TEM). Gold nanoparticles with different sizes have specific absorption spectra. When the diameters of nanoparticles is between 12 and 41 nm, the maximum absorption peaks locate at 520-530 nm and there are red shifts gradually with the increase of diameters of gold nanoparticles. And when the size of gold nanoparticle is constant, the absorbance is proportional to the concentration of gold. Obvious resonance Rayleigh scattering (RRS) and the resonance non-linear scattering such as second-order scattering (SOS) and frequency-doubling scattering (FDS) appear at the same time as well, and the maximum scattering peaks are located at 286 nm (RRS), 480 nm (SOS) and 310 nm (FDS), respectively. When the concentration of gold is constant, absorbance and the intensities of RRS, SOS and FDS (I(RRS), I(SOS) and I(FDS)) have linear relationships with the diameters of gold nanoparticles. When the diameter of gold nanoparticle is constant, the absorbance and I(RRS), I(SOS), I(FDS) are directly proportional to the concentrations of gold nanoparticles. Therefore, it is very useful for studying the liquid phase gold nanoparticles by investigating the absorption, RRS, SOS and FDS spectra.  相似文献   

12.
CdS nanoparticles (NPs) passivated with amino acids (l-alanine and l-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet–visible (UV–vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with l-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV–vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with l-alanine and l-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.  相似文献   

13.
During recent years investigation on the development of eco-friendly processes for production of gold nanoparticles (GNPs) have received much attention due to hazardous effects of chemical compounds used for nanoparticle preparation. In the present study, the purified laccase from Paraconiothyrium variabile was applied for synthesis of Au nanoparticles (AuNPs) and the properties of produced nanoparticles were characterized. The UV-vis spectrum of formed AuNPs showed a peak at 530 nm related to surface plasmon absorbance of GNPs represented the formation of gold nanoparticles after 20 min incubation of HAuCl(4) (0.6 mM) in the presence of 73 U laccase at 70°C. Transmission electron microscopy (TEM) image of AuNPs showed well dispersed nanoparticles in the range of 71-266 nm as determined by the laser light scattering method. The pattern of energy dispersive X-ray (EDX) of the prepared GNPs confirmed the structure of gold nanocrystals.  相似文献   

14.
In this article, we describe the formation of carbon nanotube (CNT)-gold nanoparticle composites in aqueous solution using 1-pyrenemethylamine (Py-CH2NH2) as the interlinker. The alkylamine substituent of 1-pyrenemethylamine binds to a gold nanoparticle, while the pyrene chromophore is noncovalently attached to the sidewall of a carbon nanotube via pi-pi stacking interaction. Using this strategy, gold nanoparticles with diameters of 2-4 nm can be densely assembled on the sidewalls of multiwalled carbon nanotubes. The formation of functionalized gold nanoparticles and CNT-Au nanoparticle composites was followed by UV-vis absorption and luminescence spectroscopy. After functionalization of gold nanoparticles with 1-pyrenemethylamine, the distinct absorption vibronic structure of the pyrene chromophore was greatly perturbed and its absorbance value was decreased. There was also a corresponding red shift of the surface plasmon resonance (SPR) absorption band of the gold nanoparticles after surface modification from 508 to 556 nm due to interparticle plasmon coupling. Further reduction of the pyrene chromophore absorbance was observed upon formation of the CNT-Au nanoparticle composites. The photoluminescence of 1-pyrenemethylamine was largely quenched after attaching to gold nanoparticles; formation of the CNT-Au nanoparticle composites further lowered its emission intensity. The pyrene fluoroprobe also sensed a relatively nonpolar environment after its attachment to the nanotube surface. The present approach to forming high-density deposition of gold nanoparticles on the surface of multiwalled carbon nanotubes can be extended to other molecules with similar structures such as N-(1-naphthyl)ethylenediamine and phenethylamine, demonstrating the generality of this strategy for making CNT-Au nanostructure composites.  相似文献   

15.
Gold nanoparticles with an average diameter of 11 nm (Au(39000)) were prepared in an SDS aqueous solution. A 80-microm liquid droplet (microdroplet) of the solution was ejected into the atmosphere from a microdroplet nozzle. Structural changes of the gold nanoparticles in the microdroplet, after they were irradiated with a focused single-nanosecond laser pulse at the wavelength of 532 nm, were studied by transmission electron microscopy (TEM) and optical absorption spectroscopy. It was revealed that the gold nanoparticles are fragmented into small particles and then the small fragments aggregate with each other. The aggregation was found to be terminated 100 micros after the laser-pulse excitation.  相似文献   

16.
Silica hydrogels and planar substrates were patterned with CdS nanoparticles using a photolithographic method based on the photo dissociation of thiols and cadmium-thiolate complexes. Silica hydrogels were prepared via a standard base-catalyzed route. The solvent was exchanged with an aqueous solution of CdSO4 and 2-mercaptoethanol, and the samples were then exposed to a focused ultraviolet beam. Planar substrates were patterned by illuminating a precursor solution spin coated on the substrates. CdS nanoparticles formed in the illuminated spots, and had a diameter below about 2 nm. The diameter of the spots illuminated by the UV beam could be varied from a few hundred to a few μm, on both hydrogels and planar substrates. Samples were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and optical absorption, photoluminescence and Raman spectroscopies. All these techniques confirmed the chemical identity of the CdS nanoparticles. To investigate the mechanism of nanoparticle formation, we took absorption spectra of the precursor solution as a function of irradiation time. In unirradiated solutions, we noticed a maximum at 250 nm, characteristic of Cd-thiolate complexes. The absorption at 250 nm decreased with increasing irradiation time. A new band appeared at 265 nm for exposures around 5 min, and that band shifted to 290 nm in samples exposed for 10 min. A yellow precipitate formed after about 30 min. XRD showed that the precipitate was cubic CdS, with a mean particle size of 1.4 nm. We attribute formation of CdS to the photodissociation of the thiols and of the Cd-thiolates. UV irradiation of these precursors yields a series of species that can react with Cd2+, such as RS·, S2− and H2S. Small CdS nanoparticles form in the initial stages of illumination, and present absorption bands in the 265–290 nm region. These CdS aggregates grow, coalesce and precipitate for longer irradiation times.  相似文献   

17.
Controlling the assembly of the nanoparticles is important because the optical properties of noble metal nanoparticles, such as the surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), are critically dependent on interparticle distances. Among many approaches available, light-induced disassembly is particularly attractive because it enables spatial modification of the optical properties of nanoparticle assemblies. In this study, we prepare gold nanoparticle (AuNP) aggregates in a gel matrix. Irradiation of the gelated AuNP aggregates at 532 nm leads to the disassembly of the aggregates, changing the color (SPR) from dark blue to red and extinguishing the SERS signal along the irradiated pattern, which opens the possibility of facile fabrication of spatially controlled SERS-generating microstructures. The photoinduced disassembly of the AuNP aggregates in solution is also investigated using UV-vis spectroscopy and transmission electron microscopy.  相似文献   

18.
研究了不同粒径的纳米银对镝配合物(乙二胺四乙酸配合物)的光谱学性质影响。当配合物溶液的pH值范围为4.0~6.0时,加入纳米银,可观察到大量的纳米银聚集体形成,而在吸收光谱的长波处出现一个新的吸收峰,随着纳米银浓度的增加,该吸收峰逐渐红移,同时,镝配合物的荧光强度增强。实验结果表明,纳米银粒子对镝配合物的荧光增强效应及荧光增强因子与纳米银粒子的浓度和粒径密切相关。随着纳米银浓度的增加,配合物的荧光强度先增强而后又逐渐降低。小粒径的纳米银对镝配合物的荧光增强因子较小。本文从纳米银粒子的聚集效应、局部电磁场增强效应及光吸收效应等方面探讨了纳米银对表面吸附镝配合物的+荧光增强效应机理。  相似文献   

19.
Highly stable and monodispersed silver nanoparticles with uniform morphology have been successfully prepared by microwave (MW) irradiation within a few seconds from the mixture of silver nitrate, ethanol and latex copolymer. The aqueous emulsion of latex copolymer acts as both reducing and stabilizing agent. To the best of our knowledge, it was the first time that the effect of MW irradiation time and latex concentration on the silver nanoparticle preparation and properties was analyzed. The formation of silver nanoparticles was confirmed by Ultraviolet–visible spectroscopy and transmission electron microscopy (TEM). The UV–Vis spectra are marked by the characteristic surface plasmon absorption band in the range 410–420 nm. From TEM images, silver nanoparticles were observed to be spherical with sizes ranging from 4 to 10 nm. Electron diffraction patterns on selected area, indicated that the silver nanoparticles are crystalline with face centered cubic structure.  相似文献   

20.
The optical limiting performance of a covalently bonded gold nanoparticle (approximately 2 nm)/polylysine hybrid material (AuNP-PLL) was investigated using 4.1 ns laser pulses at 532 nm. The hybrid material exhibits enhanced optical limiting in comparison to individual nanoparticles, presumably due to the interparticle electromagnetic interactions between particles in close proximity. Reverse saturable absorption and/or free carrier absorption were found to be the dominant contributor(s) to the optical limiting of the hybrid material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号