首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The interaction of oligophenylene ethynylene (OPE) on the (111) surface of a gold slab resembling a self-assembled monolayer (SAM) is investigated using ab initio density functional theory calculations. The authors performed a full optimization including all atoms in the OPE and in the slab to better understand OPE adsorption on the surface. It is found that OPE has two energetically favorable adsorption sites on the Au surface with relatively different molecular geometries: the nontop site adsorption greatly modifies the (111) surface structure; however, the extensive electron interactions enable a delocalized electron density distribution, implying an improved conductivity between OPE and Au, and the top site which is 0.9 eV higher in energy than the nontop and features weaker Au-S bonds. Interestingly the on top configuration shows a strong spin imbalance along the molecule and the nontop shows a small spin imbalance on the surface. This feature is of strong interest for the development of resonators for the detection of chemical and biological agents. They have also calculated the frequency spectrum of these SAMs, which yield deformations in the gold surface yielding peak frequency shifts specific to each absorption site.  相似文献   

2.
A facile method for the fabrication of dendritic gold nanoparticles (NPs) by use of an ionic polymer template has been developed. In situ generation of an imidazolium-based (cationic) polymer, poly[1-methyl-3-(4-vinylbenzyl)imidazolium], with AuCl4- counteranions is achieved by addition of HAuCl4 into a solution containing poly[1-methyl-3-(4-vinylbenzyl)imidazolium chloride]. Subsequent reduction with NaBH4 in water or in a mixture of ethanol and water affords various NPs depending on the conditions, including large dendritic gold NPs that have been analyzed by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED). The structures of the dendritic gold NPs were found to depend on the ethanol concentration. Scanning electron microscopy (SEM) images of the ionic polymer reveal that the solvent used to deposit the polymer strongly influences its structure and may be correlated to the structure of the resulting NPs.  相似文献   

3.
The catalytic performances of supported gold nanoparticles depend critically on the nature of support. Here, we report the first evidence of strong metal-support interactions (SMSI) between gold nanoparticles and ZnO nanorods based on results of structural and spectroscopic characterization. The catalyst shows encapsulation of gold nanoparticles by ZnO and the electron transfer between gold and the support. Detailed characterizations of the interaction between Au nanoparticles and ZnO were done with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and FTIR study of adsorbed CO. The significance of the SMSI effect is further investigated by probing the efficiency of CO oxidation over the Au/ZnO-nanorod. In contrast to the classical reductive SMSI in the TiO(2) supported group VIII metals which appears after high temperature reduction in H(2) with electron transfer from the support to metals, the oxidative SMSI in Au/ZnO-nanorod system gives oxygen-induced burial and electron transfer from gold to support. In CO oxidation, we found that the oxidative SMSI state is associated with positively charged gold nanoparticles with strong effect on its catalytic activity before and after encapsulation. The oxidative SMSI can be reversed by hydrogen treatment to induce AuZn alloy formation, de-encapsulation, and electron transfer from support to Au. Our discovery of the SMSI effects in Au/ZnO nanorods gives new understandings of the interaction between gold and support and provides new way to control the interaction between gold and the support as well as catalytic activity.  相似文献   

4.
A chlorophyll analog forming self-assembled monolayers (SAMs) on a gold surface was synthesized for the first time. 13(2)-(Demethoxycarbonyl)pheophorbide-a, which was converted from naturally occurring chlorophyll-a, was condensed with 2-hydroxyethyl disulfide to give a chlorin dyad linked by a disulfide bond. The chlorin analog was spontaneously immobilized on a gold substrate by soaking in an acetone solution of the dyad for 24 h. The resulting gold plate exhibited a visible absorption spectrum with about 420- and 675-nm maxima as the Soret and Qy peaks, respectively, indicating that chlorin pi-conjugates were modified on the gold substrate through Au-S bonding. Both visible absorption and fluorescence emission bands of the chlorin chromophores on the gold substrate were red-shifted compared with those of the synthesized chlorin dyad in a homogeneous acetone solution. The measured absorbance at the Soret maximum suggests that the chlorin chromophores on the gold plate were densely packed on a gold surface to form a SAM. Cathodic photocurrents were generated from SAMs of the chlorins on a gold substrate with irradiation of visible-lights above 400 nm. Photoinduced electron transfer from chlorins on the gold substrate to oxygen molecules in an electrolyte solution were attributed to the cathodic photocurrent generation.  相似文献   

5.
A method is advanced for preparing gold nanoparticles (NPs) at 50°C in aqueous acrylamide (AAm), which has the dual function of a reducing agent for HAuCl4 and a protective ligand for NPs. Nanoparticles have gold cores with the average size dAu = 20.9 ± 3.6 nm. The growth kinetics of NPs has been studied. Films of NPs have been produced on glass, silica, silicon, and polyethylene terephthalate (PET) substrates. The NPs and films have been characterized by UV-Vis and IR spectroscopy, X-ray powder diffraction, transmission and scanning electron microscopy, and atomic-force microscopy.  相似文献   

6.
A hybrid preparative method was developed to prepare organosulfur-functionalized Au nanoparticles (NPs) on silicon nanowires (SiNWs) by reacting HAuCl(4) with SiNW in the presence of thiol. A number of organosulfur molecules-dodecanethiol, hexanethiol, 1,6-hexanedithiol, and tiopronin-were used to functionalize the Au surface. Size-selected NPs ranging from 1.6 to 7.5 nm were obtained by varying the S/Au ratio and the concentration of HAuCl(4). This method was further extended to the preparation Pd and Pd-Au bimetallic NPs on SiNWs. The morphology of the metal nanostructures was examined by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The local structure and bonding of the SiNW-supported metal nanostructures were studied using X-ray absorption fine structures (XAFS) [including both X-ray near-edge structures (XANES) and extended X-ray absorption fine structures (EXAFS)] at the Au L(3)-, Pd K-, S K-, and Si K-edges. It was also found that the annealing of the thiol-capped Au NPs up to 500 degrees C transforms the surface of the thiol-capped NPs to gold sulfide, as identified using Au L(3)- and S K-edge XANES. We also illustrate that this preparative approach can be used to form size-controllable Au NPs on carbon nanotubes.  相似文献   

7.
A composite hydrogel consisting of well-dispersed Pt-Cu nanoparticles (NPs) supported on three-dimensional (3D) graphene (Pt-Cu@3DG) was successfully prepared by mild chemical reduction. The 3D interconnected macroporous structure of the graphene framework not only possesses large specific surface area that allows high metal loadings, but also facilitates mass transfer during the catalytic reaction. The Pt-Cu bimetallic alloy NPs show good catalytic activity compared with Pt NPs and reduce the content of Pt NPs used, thereby lowering costs. The morphology and composition of the Pt-Cu@3DG composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). The catalysis studies indicate that the resulting composites can be used as an efficient, inexpensive, recyclable, and stable catalyst for the reduction of 4-nitrophenol to 4-aminophenol under mild conditions.  相似文献   

8.
We synthesized an alpha-helical peptide containing two terminal thiol groups and demonstrated the method of preparation of a self-assembled monolayer (SAM) on gold with uniform orientation of the molecules on the surface. The monolayers were employed as model systems for the investigations of mediated electron transfer. The measurements of electron transfer efficiency through the peptide were performed using scanning tunneling spectroscopy (STS). The molecules were trapped between the gold tip and the substrate using a Au-S linkage. The electron transfer behavior of the peptide was examined as a function of the tip-substrate distance at fixed bias voltage and as a function of bias voltage at a fixed distance between the tip and the substrate. The data obtained from these experiments indicated that the electron transfer through alpha-helical peptide is very efficient, and its conductivity is comparable to those observed for dodecanedithiol. There is also a directional dependence of electron transmission through the peptide, which is connected with the electric field generated by the molecular dipole of the helix.  相似文献   

9.
A class of inorganic monolayers formed by assembling the molybdenum-sulfur cluster, Mo3S4(4+), onto a well-defined Au(111) surface is presented. The monolayers have been comprehensively characterized by electrochemistry, X-ray photoelectron spectroscopy (XPS), and in situ scanning tunneling microscopy (in situ STM). The voltammetric data show strong reductive and oxidative desorption signals from Au-S interactions, supported by the presence of both S and Mo signals in XPS. In situ STM shows many small pits in the dense adlayers uniformly spread over the surface, which is a typical feature of self-assembled monolayers (SAMs) of alkanethiols. The density of the pits is ca. 23 (+/-5)% and is significantly higher than for straight-chain alkanethiol SAMs with a single -SH group. The pit shapes are irregular, suggesting multiple Au-S interactions from Mo3S4(4+). High resolution images disclose bright round spots of ca. 8 A diameter representing individual molecules in the SAM. This is the first example of in situ monolayer formation by a metal-chalcogenide cluster directly anchored onto the gold surface through core ligands and offers a simple way to prepare a new class of functionalized inorganic monolayers.  相似文献   

10.
Ultrafine monodisperse gold nanoparticles (AuNPs) were synthesized by an elegant sputtering of gold onto 1- n-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF(6)) ionic liquid. It was found that the BMI-PF(6) supramolecular aggregates were loosely coordinated to the gold nanoparticles and were replaceable with thiol molecules. The self-assembly of BMI-PF(6)-stabilized AuNPs onto a (3-mercaptopropyl)trimethoxysilane (MPS)-functionalized silicon surface in 2D arrays, followed by dodecanethiol (DDT) treatment, have been demonstrated using X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and contact angle measurements. DDT treatment of tethered AuNPs revealed two types of interactions between AuNPs and the MPS-functionalized surface: (a) AuNPs anchor through Au-S chemisorption linkage resulting in strong immobilization and (b) some of the AuNPs are supported by physisorption, driven by BMI-PF(6). The attachment of these particles remains unchanged with sonication. The replacement of BMI-PF(6) aggregates from physisorbed AuNPs with DDT molecules advances the dilution of their interaction with the MPS-functionalized surface, and they subsequently detach from the silicon surface. The present finding is promising for the immobilization of ionic liquid-stabilized nanoparticles, which is very desirable for electronic and catalytic device fabrication. Additionally, these environmentally friendly AuNPs are expected to replace conventional citrate-stabilized AuNPs.  相似文献   

11.
12.
The preparation and the properties of gold nanoparticles (Au NPs) protected by perfluorinated amphiphiles are described. The thiols were devised to form a perfluorinated region close to the gold surface and to have a hydrophilic portion in contact with the bulk solvent to impart solubility in water. The monolayer protected clusters were prepared, in an homogeneous phase using sodium thiolates because of the low nucleophilicity of the alpha-perfluorinated thiols, and fully characterized with (1)H, (19)F NMR spectrometry, IR and UV-vis absorption spectroscopies, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Au NPs with core diameters ranging from 1.6 to 2.9 nm, depending on the reaction conditions, were obtained. Water-soluble NPs (MPC-F8-PEGs) were obtained with the thiol HS-F8-PEG ending with a short poly(ethylene glycol) unit (PEG-OMe 550), whereas thiols with shorter PEG chains give rise to NPs insoluble in water. MPC-F8-PEGs undergo an exchange reaction with amphiphilic alkyl thiols. ESR investigations, using a hydrophobic radical probe, indicate that the MPC-F8-PEG monolayer shows a greater hydrophobicity compared to the analogous hydrogenated monolayer.  相似文献   

13.
We have conjugated chloroquine, an anti-malarial, antiviral and anti-tumor drug, with thiol-functionalized gold nanoparticles and studied their binding interaction with bovine serum albumin (BSA) protein. Gold nanoparticles have been synthesized using sodium borohydride as reducing agent and 11-mercaptoundecanoic acid as thiol functionalizing ligand in aqueous medium. The formation of gold nanoparticles was confirmed from the characteristic surface plasmon absorption band at 522 nm and transmission electron microscopy revealed the average particle size to be ~7 nm. Chloroquine was conjugated to thiolated gold nanoparticles by using EDC/NHS chemistry and the binding was analyzed using optical density measurement and Fourier transform infrared spectroscopy. The chloroquine-conjugated gold nanoparticles (GNP-Chl) were found to interact efficiently with BSA. Thermodynamic parameters suggest that the binding is driven by both enthalpy and entropy, accompanied with only a minor alteration in protein's structure. Competitive drug binding assay revealed that the GNP-Chl bind at warfarin binding site I in subdomain IIA of BSA and was further supported by Trp212 fluorescence quenching measurements. Unraveling the nature of interactions of GNP-Chl with BSA would pave the way for the design of nanotherapeutic agents with improved functionality, enriching the field of nanomedicine.  相似文献   

14.
The use of 4.2 nm gold nanoparticles wrapped in an adsorbates shell and embedded in a TiO2 metal oxide matrix gives the opportunity to investigate ultrafast electron-electron scattering dynamics in combination with electronic surface phenomena via the surface plasmon lifetimes. These gold nanoparticles (NPs) exhibit a large nonclassical broadening of the surface plasmon band, which is attributed to a chemical interface damping. The acceleration of the loss of surface plasmon phase coherence indicates that the energy and the momentum of the collective electrons can be dissipated into electronic affinity levels of adsorbates. As a result of the preparation process, gold NPs are wrapped in a shell of sulfate compounds that gives rise to a large density of interfacial molecules confined between Au and TiO2, as revealed by Fourier-transform-infrared spectroscopy. A detailed analysis of the transient absorption spectra obtained by broadband femtosecond transient absorption spectroscopy allows separating electron-electron and electron-phonon interaction. Internal thermalization times (electron-electron scattering) are determined by probing the decay of nascent nonthermal electrons (NNEs) and the build-up of the Fermi-Dirac electron distribution, giving time constants of 540 to 760 fs at 0.42 and 0.34 eV from the Fermi level, respectively. Comparison with literature data reveals that lifetimes of NNEs measured for these small gold NPs are more than four times longer than for silver NPs with similar sizes. The surprisingly long internal thermalization time is attributed to an additional decay mechanism (besides the classical e-e scattering) for the energy loss of NNEs, identified as the ultrafast chemical interface scattering process. NNEs experience an inelastic resonant scattering process into unoccupied electronic states of adsorbates, that directly act as an efficient heat bath, via the excitation of molecular vibrational modes. The two-temperature model is no longer valid for this system because of (i) the temporal overlap between the internal and external thermalization process is very important; (ii) a part of the photonic energy is directly transferred toward the adsorbates (not among "cold" conduction band electrons). These findings have important consequence for femtochemistry on metal surfaces since they show that reactions can be initiated by nascent nonthermal electrons (as photoexcited, out of a Fermi-Dirac distribution) besides of the hot electron gas.  相似文献   

15.
制备了对甲苯基硫脲、对氯苯基硫脲和2,4,6-三溴苯基硫脲在Au表面的自组装单分子膜(SAMs),用润湿角测量仪、椭圆偏振仪、X-射线光电子能谱仪(XPS)和原子力显微镜(AFM)对单分子膜进行了分析表征。结果表明取代苯基硫脲分子的S原子与Au形成Au-S键而诱导吸附分子形成取向排列的单分子膜。由于Au表面本身具有一定的缺陷和吸附的可逆性,使得所形成的单分子膜具有一定的缺陷。  相似文献   

16.
Cu(2)O-Au nanocomposites (NCs) with tunable coverage of Au were prepared by a facile method of mixing gold nanoparticles (Au NPs) with copper(I) oxide nanowires (Cu(2)O NWs) in various ratios. These Cu(2)O-Au NCs display tunable optical properties, and their photocatalytic properties were dependent on the coverage density of Au NPs. The photocatalytic activity of Cu(2)O-Au NCs was examined by photodegradation of methylene blue. The presence of Au NPs enhanced the photodegradation efficiency of Cu(2)O NCs. The photocatalytic efficiency of Cu(2)O-Au NCs initially increased with the increasing coverage density of Au NPs and then decreased as the surface of Cu(2)O became densely covered by Au NPs. The enhanced photocatalytic efficiency was ascribed to enhanced light absorption (by the surface plasmon resonance) and the electron sink effect of the Au NPs.  相似文献   

17.
Au VK  Lam WH  Wong WT  Yam VW 《Inorganic chemistry》2012,51(14):7537-7545
A novel class of luminescent gold(III) complexes containing various tridentate cyclometalating ligands derived from 6-phenyl-2,2'-bipyridine and alkynyl ligands, [Au(RC^N^N)(C≡C-R')]PF(6), has been successfully synthesized and characterized. One of the complexes has also been determined by X-ray crystallography. Electrochemical studies show a ligand-centered reduction originated from the cyclometalating RC^N^N ligands as well as an alkynyl-centered oxidation. The electronic absorption and photoluminescence properties of the complexes have also been investigated. In acetonitrile at room temperature, the complexes show intense absorption at higher energy region with wavelength shorter than 320 nm, and a moderately intense broad absorption band at 374-406 nm, assigned as the metal-perturbed intraligand π-π* transition of the cyclometalating RC(∧)N(∧)N ligand, with some charge transfer character from the aryl ring to the bipyridine moiety. Most of the complexes have been observed to show vibronic-structured emission bands at 469-550 nm in butyronitile glass at 77 K, assigned to an intraligand excited state of the RC^N^N ligand, with some charge transfer character from the aryl to the bipyridyine moiety. Insights into the origin of the absorption and emission have also been provided by density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations.  相似文献   

18.
Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.  相似文献   

19.
Application of nanoparticles (NPs) in environmental remediation such as water purification requires a detailed understanding of the mechanistic aspects of the interaction between the species involved. Here, an attempt was made to understand the chemistry of noble metal nanoparticle-pesticide interaction, as these nanosystems are being used extensively for water purification. Our model pesticide, chlorpyrifos (CP), belonging to the organophosphorothioate group, is shown to decompose to 3,5,6-trichloro-2-pyridinol (TCP) and diethyl thiophosphate at room temperature over Ag and Au NPs, in supported and unsupported forms. The degradation products were characterized by absorption spectroscopy and electrospray ionization mass spectrometry (ESI MS). These were further confirmed by ESI tandem mass spectrometry. The interaction of CP with NP surfaces was investigated using transmission electron microscopy, energy dispersive analysis of X-rays, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS reveals no change in the oxidation state of silver after the degradation of CP. It is proposed that the degradation of CP proceeds through the formation of AgNP-S surface complex, which is confirmed by Raman spectroscopy. In this complex, the P-O bond cleaves to yield a stable aromatic species, TCP. The rate of degradation of CP increases with increase of temperature and pH. Complete degradation of 10 mL of 2 ppm CP solution is achieved in 3 h using 100 mg of supported Ag@citrate NPs on neutral alumina at room temperature at a loading of ~0.5 wt %. The effect of alumina and monolayer protection of NPs on the degradation of CP is also investigated. The rate of degradation of CP by Ag NPs is greater than that of Au NPs. The results have implications to the application of noble metal NPs for drinking water purification, as pesticide contamination is prevalent in many parts of the world. Study shows that supported Ag and Au NPs may be employed in sustainable environmental remediation, as they can be used at room temperature in aqueous solutions without the use of additional stimulus such as UV light.  相似文献   

20.
In this work, gold NPs were prepared by the Turkevich method, and their interaction with HPV and cancerous cervical tissues were studied by scanning electron microscopy, energy-dispersive x-ray spectroscopy, confocal and multiphoton microscopy and SERS. The SEM images confirmed the presence and localization of the gold NPs inside of the two kinds of tissues. The light absorption of the gold NPs was at 520 nm. However, it was possible to obtain two-photon imaging (red emission region) of the gold NPs inside of the tissue, exciting the samples at 900 nm, observing the morphology of the tissues. The infrared absorption was probably due to the aggregation of gold NPs inside the tissues. Therefore, through the interaction of gold nanoparticles with the HPV and cancerous cervical tissues, a surface enhanced Raman spectroscopy (SERS) was obtained. As preliminary studies, having an average of 1000 Raman spectra per tissue, SERS signals showed changes between the HPV-infected and the carcinogenic tissues; these spectral signatures occurred mainly in the DNA bands, potentially offering a tool for the rapid screening of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号