首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Shin W  Choi S  Oh K 《Optics letters》2002,27(21):1884-1886
We experimentally demonstrate a new wavelength- and mode-selective coupler utilizing intermodal coupling between a standard single-mode fiber (SMF) and a hollow optical fiber (HOF). The fabricated device routes optical signals such that a 1.3-microm signal is directed to the HOF port, adiabatically converting the LP(01) mode into a ring-shaped mode, which can be further connected to a gigabit ethernet link, reducing the differential mode-dispersion penalty. Optical signals near 1.5microm , meanwhile, stay in the LP(01) mode of the SMF arm for further connection to conventional wavelength-division multiplexing links based on erbium-doped fiber amplifiers. The performance of the device is characterized in terms of insertion loss, channel isolation, and mode-conversion efficiency.  相似文献   

2.
We experimentally demonstrate highly efficient coupling into a slow light slotted photonic crystal waveguide. With optical mode converters and group index tapers that provide good optical mode matching and impedance matching, a nearly flat transmission over the entire guided mode spectrum of 68.8 nm range with 2.4 dB minimum insertion loss is demonstrated. Measurements also show up to 20 dB baseline enhancement and 30 dB enhancement in the slow light region, indicating that it is possible to design highly efficient and compact devices that benefit from the slow light enhancement without increasing the coupling loss.  相似文献   

3.
Microfiber Mach Zehnder Interferometer (MMZI) is demonstrated by micromanipulating an optical microfiber drawn from a single mode fiber (SMF) using a flame brushing technique. The MMZI shows good interference fringes with an extinction ratio of 13 dB and a free spectral range (FSR) of 0.52 nm at 1530 nm. The MMZI is then embedded in a polymer with the refractive index of 1.36 to increase the stability and robustnes of the device. It is found that the transmission spectrum of the packaged MMZI is changed by the polymer, which increases the FSR to 0.83 nm. The degradation in transmission loss and extinction ratio are attributed to the disturbance at the coupling area during the packaging. Compared with waveguide based mach zehnder interferometer, the proposed MMZI is favoured due to easy fabrication, compact size, and easy integration with the fiber system.  相似文献   

4.
对锥形透镜光纤(TLF)与半导体多量子阱(MQW)平面光波光路(PLC)芯片的耦合特性进行了实验研究.数值模拟了TLF、普通单模光纤(SMF)分别和PLC芯片脊波导的耦合情形,发现TLF-PLC耦合损耗比SMF-PLC耦合损耗小3.01 dB.测得了TLF的出射光场光斑,分析了出射光场发散范围.建立光纤-PLC芯片耦合实验系统,用放大自发辐射(ASE)宽带光源在1550 nm波长处对比分析了PLC芯片与不同光纤的耦合连接损耗,从而确证最佳方案为TLF-PLC-SMF:即TLF作为入纤,SMF作为出纤时,耦合对准容易实现,损耗为10.798 dB,比TLF-PLC-TLF耦合损耗小4.458 dB.  相似文献   

5.
聚合物微环谐振波分复用器传输特性的理论分析   总被引:9,自引:6,他引:3  
根据耦合模理论,给出了1×N信道微环谐振波分复用器(MRRWM)的光强传递函数通用公式,并分析了微环谐振波分复用器的传输特性。利用参量优化结果,在中心工作波长约为 1.55μm、波长间隔约 5.6 nm的情况下,对1×8信道硅基聚合物微环谐振波分复用器进行了数值模拟。计算结果表明,该器件具有以下优良的性能:分波光谱准确,自由光谱区约为18 nm,对于半径10μm以上的微环弯曲损耗很小,且器件的插入损耗主要由波导的传输损耗决定,振幅耦合比率为0.2时对应的每条竖直输出信道的插入损耗在0.57 dB以下,信道间的串扰小于-18.5 dB,输出谐振峰3 dB带宽可达0.25 nm,最小背景光的强度约为3.8×10-4。  相似文献   

6.
In this paper, 10 Gbps optical soliton transmission link using in-line semiconductor optical amplifiers (SOAs) for already installed standard single mode fibers (SMF) at 1.3 μm wavelength has been reported. The pattern effect and the impact of chirp on pulse propagation after amplification have been investigated. The observations are based on modeling and simulation optical soliton transmission link. Optical soliton pulse transmission over distances of the order of several hundreds of kilometers has been shown with and without initial chirp.  相似文献   

7.
扩芯光纤原理及其在光器件耦合中的应用   总被引:1,自引:0,他引:1  
介绍了两种可以增大单模光纤模场直径并出射准直平行光束的扩芯光纤(ECF)的原理和制作方法。分析了单模光纤熔接渐变折射率多模光纤法通过改变渐变折射率多模光纤的长度和自聚焦参量实现模场扩大缩小的原理,制作的扩芯光纤模场直径扩大到16.6μm,出射光束平行效果较好,轴向耦合容限比单模光纤扩大了近6倍。加热扩芯光纤则是通过控制加热温度和加热时间直接使单模光纤掺杂物质发生扩散,从而实现扩束和光束准直,模场直径达到15.4μm,横向、轴向耦合容限都比单模光纤有很大提高。因此扩芯光纤可以简化单模光纤的耦合对准过程,用来制作新型的单模光纤或掺铒光纤连接器,也可以用于其它光器件中与单模光纤的准直。  相似文献   

8.
Madsen CK  Zhao JH 《Optics letters》1998,23(3):186-188
Ring resonators are promising building blocks for developing compact optical filters with arbitrary functions; however, a major challenge for planar waveguide filter implementations is to overcome the limited free spectral range (FSR) for a given core-to-cladding refractive-index difference (D) while maintaining low loss and a large range of coupling ratios. The loss and coupling of rings operating in the whispering-gallery-mode regime were investigated by use of Ge-doped silica waveguides with a low refractive-index difference (D=0.75%) . A FSR of 12 GHz with a loss of 0.36 dB/cm was demonstrated with coupling ratios of 30% (41% optimum).  相似文献   

9.
High-Order Mode Dispersion Compensating Modules (HOM-DCM) using spatial optical transformations for mode conversion are reviewed. It is shown that mode transformers using this technology can be designed to transform the LP01 mode of SMF fibers to the LP02 mode of specially designed dispersion compensating High-Order Mode Fiber (HOMF), with typical insertion loss of ∼1 dB, and typical extinction ratio to other modes less than -20 dB. The HOMF itself can provide high negative dispersion [typically in the range of 400-600 ps/(nm km)], and high negative dispersion slope, allowing efficient compensation of all types of transmission fiber. Combining two mode transformers with HOMF and possibly trim fiber for fine-tuning, results, for example, in a HOM-DCM that compensates 100 km LEAF? fiber, with Insertion loss < 3.5 dB, and Multi-Path Interference (MPI) < -36 dB. MPI phenomena in HOM-DCMs is characterized, and shown to comprise both coherent and incoherent parts, and to result from both the mode transformers and fiber coupling within the HOMF. MPI values of < -36 dB have been shown to allow error free transmission of 10 Gb/s signals over up to 6000 km. Finally, a number of applications well suited to the properties of HOM-DCMs are reviewed.  相似文献   

10.
Experimental results of a high-speed silicon optical modulator based on carrier depletion in a pipin diode and Germanium photodetectors are presented. 10 Gbit/s data transmission is obtained for both optoelectronic devices, with for the optical modulator an extinction ratio (ER) higher than 8 dB and insertion loss (IL) lower than 6 dB and for Ge photodetector, a zero-bias operating at 10 Gbit/s. Finally, a 10 Gbit/s optical link combining Si modulator and Ge photodetector is demonstrated.  相似文献   

11.
牛凯  叶雄英  周兆英  侯斌  刘胜 《光学技术》2004,30(4):431-433
利用高斯光束传输理论进行了阵列光开关的光纤耦合设计计算。根据ABCD矩阵推导出了光束通过球透镜时的传播规律,计算了在光纤与光纤之间两个球透镜耦合的效率,分析了影响耦合效率的因素。通过设计计算,确定了光纤端部的位置,使得整个损耗达到了最小。从理论上来看,在波长λ=1 55μm时,4×4阵列光开关的耦合效率可以达到91%以上。  相似文献   

12.
Ilchenko VS  Yao XS  Maleki L 《Optics letters》1999,24(11):723-725
We demonstrate a simple method for efficient coupling of standard single-mode optical fibers to a high- Q optical microsphere cavity. Phase-matched excitation of whispering-gallery modes is provided by an angle-polished fiber tip in which the core-guided wave undergoes total internal reflection. In the experimental setup, which included a microsphere with both an input and an output coupler, the total fiber-to-fiber transmission at resonance reached 23% (total insertion loss, 6.3 dB), with loaded quality factor Q>/=3x10(7) and unloaded Q approximately 1.2x10(8) at 1550 nm. A simple pigtailing method for microspheres permits their wider use in fiber optics and photonics devices.  相似文献   

13.
与入射线偏振光振动方向无关的低偏振度消偏器   总被引:1,自引:0,他引:1  
刘继红  方强  阴亚芳  梁猛  陆蓉 《光学学报》2007,27(3):536-539
消偏器是光纤传感器、光放大器等偏振敏感性光学系统中的关键器件,用于减小输入光的偏振度(DOP).设计了一种与入射线偏振光振动方向无关的低偏振度消偏器,该器件中利用人为的偏振相关延迟代替了保偏光纤的双折射,并在偏振相关型消偏器前增加了一个1/4波片,从而对任意方向振动的线偏振光具有相同的消偏能力,结构紧凑.对消偏性能随波片阶数、入射光中心波长和振动方向的变化作了数值计算.实验中采用半峰全宽为0.13 nm的光源,入射线偏振光在任意方向振动时,输出光偏振度小于2.6%,消偏器的插入损耗为0.6 dB,损耗起伏小于0.11 dB.实验和数值计算结果表明,该消偏器具有低偏振度、低插入损耗和适合于宽光谱应用的优点.  相似文献   

14.
与人射线偏振光振动方向无关的低偏振度消偏器   总被引:2,自引:0,他引:2  
消偏器是光纤传感器、光放大器等偏振敏感性光学系统中的关键器件,用于减小输入光的偏振度(DOP)。设计了一种与入射线偏振光振动方向无关的低偏振度消偏器,该器件中利用人为的偏振相关延迟代替了保偏光纤的双折射,并在偏振相关型消偏器前增加了一个1/4波片,从而对任意方向振动的线偏振光具有相同的消偏能力,结构紧凑。对消偏性能随波片阶数、入射光中心波长和振动方向的变化作了数值计算。实验中采用半峰全宽为0.13 nm的光源,入射线偏振光在任意方向振动时,输出光偏振度小于2.6%,消偏器的插入损耗为0.6 dB,损耗起伏小于0.11 dB。实验和数值计算结果表明,该消偏器具有低偏振度、低插入损耗和适合于宽光谱应用的优点。  相似文献   

15.
Ahn SW  Steier WH  Kuo YH  Oh MC  Lee HJ  Zhang C  Fetterman HR 《Optics letters》2002,27(23):2109-2111
We have demonstrated a hybrid Mach-Zehnder optical modulator consisting of a large-core, low-loss fluorinated passive polymer waveguide and an electro-optic (EO) polymer waveguide. The combination exhibits low fiber coupling loss to the passive waveguide and reduced transmission loss because the EO polymer waveguide is used only in the active region. The two waveguides are connected by vertical tapers that permit low-loss adiabatic coupling between the two modes. The half-wave voltage and the insertion loss of the fabricated modulator are 3.6 V and 6 dB, respectively, at a wavelength of 1.55 microm . The estimated coupling loss with the standard single-mode fiber is ~0.5 dB.  相似文献   

16.
We report room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) with light propagating parallel to the plane of the Ge/SiGe MQWs for applications in integrated photonics. Planar waveguides embedded in a p-i-n diode are fabricated in order to investigate the absorption spectra at different reverse bias voltages from optical transmission measurements for both TE and TM polarizations. Polarization dependence of the absorption spectra of the Ge/SiGe MQWs is clearly observed. The planar waveguides exhibit a high extinction ratio and low insertion loss over a wide spectral range for TE polarization.  相似文献   

17.
The mid-wave IR (MWIR) spectral band extending from 3 to 5 microns is considered to be a low loss atmospheric window. The MWIR wavelengths are eye safe and are attractive for several free-space applications including remote sensing of chemical and biological species, hard target imaging, range finding, target illumination, and free-space communications. Due to the nature of light-matter interaction characteristics, MWIR wavelength based systems can provide unique advantages over other spectral bands for these applications. The MWIR wavelengths are found to effectively penetrate natural and anthropogenic obscurants. Consequently, MWIR systems offer increased range performance at reduced power levels. Free-space, line-of-sight optical communication links for terrestrial as well as space based platforms using MWIR wavelengths can be designed to operate under low visibility conditions. Combined with high-bandwidth, eye-safe, covert and jam proof features, a MWIR wavelength based optical communication link could play a vital role in hostile environments. A free-space optical communication link basically consists of a transmitter, a receiver and a scheme for directing the beam towards a target. Coherent radiation in the MWIR spectral band can be generated using various types of lasers and nonlinear optical devices. Traditional modulation techniques are applicable to these optical sources. Novel detector and other subcomponent technologies with enhanced characteristics for a MWIR based system are advancing. Depending on the transmitter beam characteristics, atmospheric conditions may adversely influence the beam propagation and thereby increasing the bit error rate. For satisfactory transmission over a given range, the influence of atmosphere on beam propagation has to be analyzed. In this chapter, salient features of atmospheric modeling required for wavelength selection and performance prediction is presented. Potential optical sources and detectors for building a practical MWIR communication link are surveyed. As an illustration, the design configuration and experimental results of a recently demonstrated free-space, obscurant penetrating optical data communication link suitable for battlefield applications is discussed. In this case, the MWIR wavelength was derived using an all solid-state, compact, optical parametric oscillator device. With this device, weapon codes pertaining to small and large weapon platforms were transmitted over a range of 5 km. Furthermore, image transmission through light fog, accomplished using this hardware, is also presented. Advances in source and detector technologies are contributing to the development of cost effective systems compatible with various platforms requirements. In coming years, MWIR wavelengths are anticipated to play a vital role in various human endeavors.  相似文献   

18.
To the best of our knowledge, proposed is the first variable fiber optical attenuator (VFOA) using an electronically controlled variable focus liquid lens. The approach uses the changes in the radius of curvature of the liquid lens edge to enable an electronically controlled optical wedge that produces a varying beam tilt angle. In effect, changing beam tilt within a single mode fiber (SMF) lens free space coupling assembly leads to a polarization independent broadband VFOA design. The demonstrated VFOA experiment shows broadband operation over the 1530-1560 nm C-Band with a 40 dB dynamic range, <0.5 dB resolution, 0.3 dB polarization dependant loss, 4.3 dB fiber-to-fiber optical loss, 3 dB optical bandwidth from 1510 nm to 1700 nm, and switching time of <100 ms. Applications for this VFOA include use in hand held test and measurement equipment.  相似文献   

19.
We report here for the first time to our knowledge the characterization of mechanically induced long period fiber gratings in novel MSM fiber structure. Reversible grating of same period and length was induced in single mode fiber, multimode fiber and novel multimode-singlemode-multimode (MSM) fiber structure. The spectral response of reversible LPFG in SMF is verified experimentally as well as from simulation results and then compared with the experimental spectral response of reversible LPFG in multimode fiber and MSM fiber structure. Reversible LPFG in novel MSM fiber structure is the most optimized and suitable grating for sensing application. For this grating we have obtained single resonant wavelength over a wide wavelength range and maximum transmission loss peak of around 20 dB.  相似文献   

20.
肖亚玲  刘艳格  王志  刘晓颀  罗明明 《物理学报》2015,64(20):204207-204207
提出了三种基于少模光纤的全光纤熔融模式选择耦合器. 根据模式匹配原理采用单模光纤与少模光纤熔融连接方式, 运用耦合模理论及光束传播法模拟分析了模式选择耦合器的结构参数对模式选择及耦合特性的影响, 实现了单模光纤中基模到少模光纤中不同阶模式的转换, 以满足不同的应用需求. 实验上以2× 2熔融光纤耦合器为例, 采用对称和非对称熔融拉锥方式, 分别实现了从基模到LP11, LP21模式的转换. 实验结果表明所得到的LP11, LP21模式在1530–1560 nm的波长带宽范围内均有较高的模式纯净度, 且模式耦合效率高于80%, 与理论模拟结果基本一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号