首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of epoxy alcohols were prepared by simple, straightforward methods. These compounds were very reactive monomers that polymerized rapidly on UV irradiation in the presence of cationic photoinitiators. The kinetics of the cationic photopolymerization of these monomers were studied with diaryliodonium salt photoinitiators and real‐time IR spectroscopy. The rate of epoxide ring‐opening polymerization was enhanced markedly by the presence of the hydroxy group. Using model compounds, the monomers were shown to polymerize via an activated monomer mechanism. Simple epoxy alcohols polymerized to give polymers with a hyperbranched structure. The novel monomers also were observed to accelerate the rate of the photopolymerization of mono‐ and multifunctional epoxides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 389–401, 2000  相似文献   

2.
Silyl glyoxylates are proposed here as high‐performance photoinitiators (PIs) for the hybrid polymerization of cationic and radical monomers. Recently, silyl glyoxylates were reported as a new class of high‐performance Type I photoinitiators for free radical polymerization under air upon exposure to different near‐UV and blue LEDs. In this article, we report this new class of photoinitiators to initiate cationic polymerization in combination with an iodonium salt. This system can also be used to initiate simultaneously free radical and cationic polymerizations, for example, for the free radical/cationic hybrid polymerization and for the synthesis of interpenetrating polymer networks. The system silyl glyoxylate/iodonium exhibits excellent polymerization performances and exceptional bleaching properties compared to other well established photoinitiators (e.g., camphorquinone). Furthermore, a hybrid monomer is also introduced in this article (2‐vinyloxyethoxyethyl methacrylate [VEEM]) leading to a huge improvement of the mechanical properties of the final polymer through hybrid polymerization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1420–1429  相似文献   

3.
The synthesis of a series of novel cationically photopolymerizable epoxide monomers bearing benzyl, allyl, and propargyl acetal and ether groups that can stabilize free radicals was carried out. These monomers display enhanced reactivity in cationic photopolymerization in the presence of certain onium salt photoinitiators. Specifically, this article describes schemes for the synthesis of cycloaliphatic epoxy monomers bearing free‐radical stabilizing groups. During UV irradiation of an onium salt cationic photoinitiator, the aryl radicals that are generated abstract labile protons present in such monomers to generate the corresponding carbon‐centered radicals. Subsequently, these radicals can interact with the onium salt by a redox mechanism to induce the decomposition of these salts. The overall result is that additional cationic species are generated by this mechanism that increase the rate and extent of the cationic ring‐opening polymerization of the epoxide monomer. An investigation of the photopolymerizations of the monomers prepared during this work was carried out using Fourier transform real‐time infrared spectroscopy, and conclusions were drawn with respect to the relationship between their structures and reactivity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2385–2395, 2001  相似文献   

4.
Porous hybrid organo‐silica monoliths have been prepared inside pretreated 100 μm id UV transparent fused‐silica capillaries using simultaneous sol‐gel transition and polymerization of 3‐(methacryloyloxy)propyl trimethoxysilane in the presence of toluene as a porogen. The sol‐gel reaction was catalyzed by hydrochloric acid while various photoinitiators including azobisisobutyronitrile, 2,2‐dimethoxy‐2‐phenylacetophenone, and Irgacure 819 were used for the photopolymerization carried out under irradiation with UV light at a wavelength of 254 or 365 nm. The chromatographic performance of photopolymerized monolithic columns in RP liquid chromatographic mode was assessed with respect to the following metrics: column efficiency, methylene and steric selectivity, effect of silanol groups, van Deemter plot, permeability, and pore size distribution. Columns with an efficiency of up to 77 000 plates/m for benzene has been achieved at a flow velocity of 0.47 mm/s. The performance of photopolymerized hybrid monolithic column was compared to the performance of columns prepared via thermally initiated polymerization.  相似文献   

5.
Studies of the onium salt photoinitiated cationic ring‐opening polymerizations of various 3,3‐disubstituted oxetane monomers have been conducted with real‐time infrared spectroscopy and optical pyrometry. The polymerizations of these monomers are typified by an extended induction period that has been attributed to the presence of a long‐lived tertiary oxonium ion intermediate formed by the reaction of the initially formed secondary oxonium ion with the cyclic ether monomer. Because the extended induction period in the photopolymerization of these monomers renders oxetane monomers of limited value for many applications, methods have been sought for its minimization or elimination. Three general methods have been found effective in markedly shortening the induction period: (1) carrying out the photopolymerizations at higher temperatures, (2) copolymerizing with more reactive epoxide monomers, and (3) using free‐radical photoinitiators as synergists. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3205–3220, 2005  相似文献   

6.
New hybrid vinyl monomers with both cationic- and radical-polymerizable vinyl groups were synthesized by the reaction of bis[1(chloromethyl)-2-(vinyloxy)ethyl]terephthalate ( 3 ) with unsaturated carboxylic acids using 1,8-diazabicyclo[5.4.0]-undecene-7 (DBU) as a base. The reaction of 3 with methacrylic acid 4a was carried out using DBU in DMSO at 70°C for 24 h to give an 86% yield of the hybrid vinyl monomer ( 5a ). Polycondensation of 3 with unsaturated dicarboxylic acids was also performed using DBU to give hybrid vinyl oligomers with radical polymerizable C (DOUBLE BOND) C groups (VR) in the main chain and cationic polymerizable vinyl ether moieties (VC) on the side chain. The photopolymerization of these hybrid vinyl compounds proceeded smoothly in bulk using either a cationic photoinitiator such as a sulfonium salt or a radical photoinitiator such as acyl phosphine oxide under UV irradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Multifunctional alkyl glycidyl ether and oxetane monomers are usually deemed to be poorly reactive and are consequently of limited use for high speed photocuring applications. However, these monomers can be made to undergo exceedingly rapid exothermic photopolymerization when combined with a multifunctional acrylate monomer and a corresponding free radical photoinitiator. Under optimum UV irradiation conditions, these hybrid photopolymerizations take place rapidly and substantially without an induction period. A mechanism was proposed on the basis of thermal acceleration of the cationic ring‐opening polymerizations induced by the fast exothermic free radical acrylate photopolymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3759–3769, 2007  相似文献   

8.
The spectral sensitivity of onium salt photoinitiators in cationic polymerization can be tuned from the short wavelength region of the UV spectrum to wavelengths up to the visible region by using direct and indirect activation, respectively. Indirect activation is based on the electron transfer reactions between onium salts and free radical photoinitiators, appropriate sensitizers and compounds capable of forming charge transfer complexes. Bisacylphosphine oxides, dimanganese decacarbonyl in conjunction with alkyl halides and titanocene type photoinitiators such as Irgacure 784 were shown to be useful free radical promoters providing the possibility of performing cationic polymerization in the long wavelength and visible region. The synthetic routes to prepare block copolymers by using electron transfer photosensitization and free radical promoted cationic polymerization are also described.  相似文献   

9.
This article describes the development of optical pyrometry (OP) as a new analytical technique for the continuous monitoring of the progress of both free‐radical and cationic photopolymerizations. The method is rapid, reproducible, and very easy to implement. A temperature profile of a photopolymerization can be obtained. Preliminary studies have shown that the temperatures of some polymerizing monomers can easily reach temperatures in excess of 250 °C. The effects of the mass and reactivity of the monomer, light intensity, structures, and concentrations of the photoinitiators and monomers as well as the presence or absence of oxygen on various free‐radical and cationic photopolymerizations were examined with this method. Coupling of real‐time infrared spectroscopy with OP provides a convenient method for simultaneously monitoring both the chemical conversion and the temperature of a photopolymerization. This combined technique affords new insights into the effects of temperature‐induced autoacceleration on the course of photopolymerizations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 579–596, 2003  相似文献   

10.
Free‐radical/cationic hybrid photopolymerizations of acrylates and epoxides were initiated using a three‐component initiator system comprised of camphorquinone as the photosensitizer, an amine as the electron donor, and a diaryliodonium salt. Thermodynamic considerations revealed that the oxidation potential of the electron donor must be less than 1.34 V relative to SCE for electron transfer with the photoexcited camphorquinone to take place. This electron transfer leads to the production of the active centers for the hybrid polymerization (two radicals and a cation). Further investigation revealed that only a subset of electron donors that meet the oxidation potential requirement resulted in polymerization of the epoxide monomer; therefore, a second requirement for the electron donor (pKb higher than 8) was established. Experiments performed using a combination of electron donors revealed that the onset of the hybrid system's cationic polymerization can be advanced or delayed by controlling the concentration and composition of the electron donor(s). These studies demonstrate that a single three‐component initiator system can be used to initiate and chemically control the sequential curing properties of a free‐radical/cationic hybrid photopolymerization and is a viable alternative to separate photoinitiators for each type of polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1747–1756, 2005  相似文献   

11.
Urethane–urea dimethacrylates were synthesized and used in the preparation of nanocomposites containing gold nanoparticles (Au NPs) in situ photogenerated during the UV‐curing process in the absence of reducing agent. A study of the photopolymerization kinetics showed that the photoreactivity of the monomers alone or in combination with a dual urethane benzophenone (BP) macromer is dependent on the nature of photoinitiator (Irgacure819, BP/amine) and the formulation composition. It was found that the addition of 1 wt % AuBr3 in monomers slightly improved the polymerization rate and the degree of conversion. The formation of Au NPs into the network was confirmed through UV–vis, XRD, EDX, SAXS, and TEM analyses, the last indicating the existence of NPs with size around 8.5 nm and spherical/triangle shapes. On addition of 10 wt % 2[N‐methacryloyloxyethyl‐(N'‐2‐thioethyl)] (urea) in formulation, the Au NPs (200 nm) became predominantly cubic/hexagonal in shape. The composite films emit fluorescence at 575 nm, and this property could be exploited in the field of fluorescent bio/sensors. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 728–738  相似文献   

12.
This study explored the abilities of 1‐(9‐anthrylmethyloxy)‐2‐pyridone and related compounds, which absorb long‐wavelength light (>350 nm), to photochemically initiate radical and cationic polymerizations. It was found that the irradiation of the title compounds initiates the radical polymerization of styrene whereas the cationic polymerization of oxetane proceeds in the presence of these photoinitiators to a negligible extent. The behavior of 9‐anthrylmethyloxyl and amidyl radicals in the photopolymerization process of styrene was discussed based on 1H NMR, UV, and fluorescence spectral data. In addition, the photoinitiation ability of the anthrylmethyloxyl end group was also investigated by using its model compound. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2859–2865, 2004  相似文献   

13.
Curcumin, a naturally occurring, intensely yellow dye extracted from the spice turmeric, is an efficient photosensitizer for diaryliodonium salt photoinitiators at wavelengths ranging from 340 to 535 nm. With curcumin as a photosensitizer, it is possible to carry out the cationic photopolymerization of a wide variety of epoxide, oxetane, and vinyl monomers with long‐wavelength UV and visible light. An example of the photopolymerization of an epoxide monomer with ambient solar irradiation is provided. Several other curcumin analogues were synthesized, and their use as photosensitizers is examined. With such photosensitizers, the range of spectral sensitivity can be extended well into the visible region of the electromagnetic spectrum. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5217–5231, 2005  相似文献   

14.
Silicon-containing divinyl ether monomers were synthesized by the addition reaction of glycidyl vinyl ether ( 1 ) with various silyl dichlorides using tetra-n-butylammonium bromide (TBAB) as a catalyst. The reaction of 1 with diphenyl dichlorosilane gave bis-[1-(chloromethyl)-2-(vinyloxy)-ethyl]diphenyl silane ( 3a ) in 89% yield. Polycondensations of 3a with terephthalic acid were also carried out using 1,8-Diazabicyclo[5.4.0]-7-undecene (DBU) to afford silicon-containing polyfunctional vinyl ether oligomers ( 5 ). A multifunctional Si-monomer with both vinyl ether and methacrylate groups ( 7 ) was prepared by the reaction of 3a with potassium methacrylate using TBAB as a phase transfer catalyst. Photoinitiated cationic polymerizations of these vinyl ether compounds proceeded rapidly using the sulfonium salt, bis-[4-(diphenyl-sulfonio)phenyl]sulfide-bis-hexafluorophoshate (DPSP), as the cationic photoinitiator in neat mixtures upon UV irradiation. Multifunctional monomer 7 with both vinyl ether and methacrylate groups showed “hybrid curing properties” using both DPSP and the radical photoinitiator, 2,4,6-trimethylbenzoyl diphenylphoshine oxide (TPO). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3217–3225, 1997  相似文献   

15.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

16.
In this article, novel azahelicenes (AZs) were synthesized and proposed as high performance visible light photoinitiators for both the free radical polymerization of acrylates and the cationic polymerization (CP) of epoxides upon visible light exposure using Light Emitting Diodes (LEDs) @405, @455, and @470 nm. Excellent polymerization initiating abilities are found and high final conversions were obtained. Remarkably, an exceptional long lifetime photoluminescence property of the polymer films was observed when synthesized in presence of AZs. A full picture of the involved chemical mechanisms is given. AZs being high performance photoinitiators, their use in new cationic LED 3D printing resins will be also presented, that is, the cationic process upon LED projector @405 nm can be useful to reduce the shrinkage usually observed for radical polymerization. LED projector printing is very interesting compared to laser writing as this technology projects the profile of an entire layer of a 3D object at one time. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1189–1199  相似文献   

17.
采用动力学分析方法,测定了几种不同配比光固化粉末涂料引发剂的紫外吸收光谱,并由此进行了量子效率的测定.据此可比较不同引发体系的引发效率.文中详细介绍了计算量子效率的过程.结果表明,不同的引发剂体系不同的配比,其引发效率可相差2—3倍.  相似文献   

18.
The performance of a series of 1-amino-2,6-dicyano-3,5-diphenylbenzene derivatives (i.e., meta-terphenyls) as fluorescent molecular probes for monitoring cationic photopolymerization of monomers by the Fluorescence Probe Technique (FPT) was studied. It was found that the m-terphenyls accelerate the cationic photopolymerization initiated with diphenyliodonium photoinitiators at the wavelength where the photoinitiator alone does not work. Consequently, application of the m-terphenyls in a dual role: (a) as fluorescent probes for monitoring the cationic polymerization progress, and (b) as long-wavelength sensitizers for diphenyliodonium photoinitiators is proposed. Next, a precise method for determination of relative sensitization efficiency of the sensitizers has been devised and applied for evaluation of the performance of the m-terphenyl sensitizers in comparison to that of a commercial sensitizer: 2,4-diethyl-9H-thioxanthen-9-one.  相似文献   

19.
The effects of photoinitiator structure and variations in the experimental parameters on the rate and extent of the photoinitiated cationic polymerization of propenyl ether monomers were studied. It was found that the photoinitiators can be divided into two classes: those which exhibit an induction period and those which do not. It was demonstrated that in those propenyl ether polymerizations using iodonium salts and certain sulfonium salts which do not have an induction period, a free radical chain-induced decomposition of the onium salt takes place. The reactivity of a particular onium salt photoinitiator was shown to be related to its reduction potential. It was also shown that the structure of the monomer plays a major role in the free radical induced decomposition reaction. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Several new epoxide monomers based on dicyclopentadiene (DCPD) were prepared using straightforward reaction chemistry. Those monomer-bearing groups in addition to the epoxy moiety, which can stabilize free radicals, display a pronounced acceleration of the rate of cationic ring-opening polymerization in the presence of diaryliodonium salt photoinitiators. Mechanistic studies conducted with the aid of model compounds have shown that the apparent rate acceleration is due to the free radical chain-induced decomposition of the photoinitiator. One of the chain carriers in this reaction involves a monomer-derived free radical. Also prepared was dicyclopentadiene monomer (V) bearing polymerizable epoxide and 1-propenyl ether groups in the same molecule. The functional groups in V appear to undergo independent vinyl and epoxide ring-opening polymerization. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3427–3440, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号