首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a multiple-image hiding scheme based on the amplitude- and phase-truncation approach, and phase retrieval iterative algorithm in the fractional Fourier domain. The proposed scheme offers multiple levels of security with asymmetric keys. Multiple input images multiplied with random phase masks are independently fractional Fourier transformed with different orders. The individual keys and common keys are generated by using phase and amplitude truncation of fractional spectrum. After using two fractional Fourier transform, the resultant encrypted image is hided in a host image with phase retrieval iterative algorithm. Using the correct universal keys, individual keys, and fractional orders, one can recover the original image successfully. Computer simulation results with four gray-scale images support the proposed method. To measure the validity of the scheme, we calculated the mean square error between the original and the decrypted images. In this scheme, the encryption process and generation of decryption keys are complicated and should be realized using computer. For decryption, an optoelectronic setup has been suggested.  相似文献   

2.
We propose a method to encrypt two covert images into an overt image based on phase-truncated Fourier transforms and phase retrieval. In this method, the two original images are self-encoded in the manner that one of the two images is directly separated into two phase masks (PMs) and used as keys for encryption, and then multiplied by a PM which is generated by using phase retrieval algorithm. At last, the whole encryption process is completed by a Fourier transform operation. In the decryption process, the image without a separation and the two PMs used as keys for encryption are all treated as encoded data. The cryptosystem is asymmetric which means the keys for encryption are different from those for decryption. Numerical simulations are presented to show the viability and good performance of the proposed method.  相似文献   

3.
We propose an image encryption scheme using chaotic phase masks and cascaded Fresnel transform holography based on a constrained optimization algorithm. In the proposed encryption scheme, the chaotic phase masks are generated by Henon map, and the initial conditions and parameters of Henon map serve as the main secret keys during the encryption and decryption process. With the help of multiple chaotic phase masks, the original image can be encrypted into the form of a hologram. The constrained optimization algorithm makes it possible to retrieve the original image from only single frame hologram. The use of chaotic phase masks makes the key management and transmission become very convenient. In addition, the geometric parameters of optical system serve as the additional keys, which can improve the security level of the proposed scheme. Comprehensive security analysis performed on the proposed encryption scheme demonstrates that the scheme has high resistance against various potential attacks. Moreover, the proposed encryption scheme can be used to encrypt video information. And simulations performed on a video in AVI format have also verified the feasibility of the scheme for video encryption.  相似文献   

4.
A single-channel color image encryption is proposed based on asymmetric cryptosystem. The color components respectively multiplied with three random phase encryption keys are first combined into one gray image using convolution for further encoding into a real-value gray ciphertext with the asymmetric cryptosystem. Then four decryption keys, which are different from encryption keys and generated in the encryption process, can be used for image decryption. As a result, a more compact and robust system, permitting a real-value gray ciphertext to be transmitted, has been obtained. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.  相似文献   

5.
A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.  相似文献   

6.
基于gyrator变换和矢量分解的非对称图像加密方法   总被引:1,自引:0,他引:1       下载免费PDF全文
姚丽莉  袁操今  强俊杰  冯少彤  聂守平 《物理学报》2016,65(21):214203-214203
本文结合矢量分解和gyrator变换的数学实现得到了一种新的非对称图像加密算法,它将待加密图像先通过矢量分解加密到两块纯相位板中,然后利用从gyrator变换的数学实现中推导出来的加密算法加密其中一块相位板,获得最终的实值密文.另一块相位板作为解密密钥.算法的解密密钥不同于加密密钥,实现了非对称加密,加密过程中产生的两个私钥增大了算法的安全性.数值模拟结果验证了该算法的可行性和有效性.  相似文献   

7.
A new cryptology in dual fractional Fourier-wavelet domain is proposed in this paper, which is calculated by discrete fractional Fourier transform and wavelet decomposition. Different random phases are used in different wavelet subbands in encryption. A new color image encoding method is also presented with basic color decomposition and encryption respectively. All the keys, including random phases and fractional orders in R, G and B three channels, should be correctly used in decryption, otherwise people cannot obtain the totally correct information. Some numerical simulations are presented to demonstrate the possibility of the method. It would have widely potential applications in digital color image processing and protection.  相似文献   

8.
Xiaoyong Liu  Yiping Cao  Pei Lu  Xi Lu  Yang Li 《Optik》2013,124(24):6590-6593
A new optical image encryption method based on compressed sensing and Arnold transformation is proposed. First, dimensional reduction and random projection, the characteristics of compressed sensing, are utilized to compress and encrypt a digital image. Second, Arnold transformation is used to scramble the encryption image followed by compressed sensing with low data volume. Then, the encryption image is encrypted again by double random phase encoding optical encryption technique; two random phase masks generated by sequences of irrational number are been used as secret keys. In the end, the multi-encrypted information is embedded into the host image and transmitted. At the receiver, original image information is reconstructed approximately via orthogonal matching pursuit algorithm. The peak signal-to-noise ratio and the normalized cross-correlation between the original image and the decrypted one are used to calculate the quality of the decryption image. The experimental results demonstrate that our method is secure and robust.  相似文献   

9.
A multiple-image encryption method based on two-step phase-shifting interferometry(PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of four index matrices to store original pixel positions, all the pixels of four secret images are firstly reordered in an ascending order; then, the four reordered images are transformed by five-order Haar wavelet transform and performed sparseness operation. After Arnold transform and pixels sampling operation, one combined image can be grouped with the aid of compressive sensing(CS)and spatial multiplexing techniques. Finally, putting the combined image at the input plane of the PSI encryption scheme,only two interferograms ciphertexts can be obtained. During the decoding and decryption, utilizing all the secret key groups and index matrices keys, all the original secret images can be successfully decrypted by a wave-front retrieval algorithm of two-step PSI, spatial de-multiplexing, inverse Arnold transform, inverse discrete wavelet transform, and pixels reordering operation.  相似文献   

10.
A multiple-image encryption scheme is proposed based on the asymmetric technique, in which the encryption keys are not identical to the decryption ones. First, each plain image is scrambled based on a sequence of chaotic pairs generated with a system of two symmetrically coupled identical logistic maps. Then, the phase-only function of each scrambled image is retrieved with an iterative phase retrieval process in the fractional Fourier transform domain. Second, all phase-only functions are modulated into an interim, which is encrypted into the ciphertext with stationary white noise distribution by using the fractional Fourier transform and chaotic diffusion. In the encryption process, three random phase functions are used as encryption keys to retrieve the phase-only functions of plain images. Simultaneously, three decryption keys are generated in the encryption process, which make the proposed encryption scheme has high security against various attacks, such as chosen plaintext attack. The peak signal-to-noise is used to evaluate the quality of the decrypted image, which shows that the encryption capacity of the proposed scheme is enhanced considerably. Numerical simulations demonstrate the validity and efficiency of the proposed method.  相似文献   

11.
A novel double-image encryption algorithm is proposed, based on discrete fractional random transform and chaotic maps. The random matrices used in the discrete fractional random transform are generated by using a chaotic map. One of the two original images is scrambled by using another chaotic map, and then encoded into the phase of a complex matrix with the other original image as its amplitude. Then this complex matrix is encrypted by the discrete fractional random transform. By applying the correct keys which consist of initial values, control parameters, and truncated positions of the chaotic maps, and fractional orders, the two original images can be recovered without cross-talk. Numerical simulation has been performed to test the validity and the security of the proposed encryption algorithm. Encrypting two images together by this algorithm creates only one encrypted image, whereas other single-image encryption methods create two encrypted images. Furthermore, this algorithm requires neither the use of phase keys nor the use of matrix keys. In this sense, this algorithm can raise the efficiency when encrypting, storing or transmitting.  相似文献   

12.
Tao R  Lang J  Wang Y 《Optics letters》2008,33(6):581-583
A novel image encryption algorithm is proposed based on the multiple-parameter fractional Fourier transform, which is a generalized fractional Fourier transform, without the use of phase keys. The image is encrypted simply by performing a multiple-parameter fractional Fourier transform with four keys. Optical implementation is suggested. The method has been compared with existing methods and shows superior robustness to blind decryption.  相似文献   

13.
In most of the existing image encryption algorithms the generated keys are in the form of a noise like distribution with a uniform distributed histogram. However, the noise like distribution is an apparent sign indicating the presence of the keys. If the keys are to be transferred through some communication channels, then this may lead to a security problem. This is because; the noise like features may easily catch people׳s attention and bring more attacks. To address this problem it is required to transfer the keys to some other meaningful images to disguise the attackers. The watermarking schemes are complementary to image encryption schemes. In most of the iterative encryption schemes, support constraints play an important role of the keys in order to decrypt the meaningful data. In this article, we have transferred the support constraints which are generated by axial translation of CCD camera using amplitude-, and phase- truncation approach, into different meaningful images. This has been done by developing modified fusion technique in wavelet transform domain. The second issue is, in case, the meaningful images are caught by the attacker then how to solve the copyright protection. To resolve this issue, watermark detection plays a crucial role. For this purpose, it is necessary to recover the original image using the retrieved watermarks/support constraints. To address this issue, four asymmetric keys have been generated corresponding to each watermarked image to retrieve the watermarks. For decryption, an iterative phase retrieval algorithm is applied to extract the plain-texts from corresponding retrieved watermarks.  相似文献   

14.
Double image encryption based on iterative fractional Fourier transform   总被引:1,自引:0,他引:1  
We present an image encryption algorithm to simultaneously encrypt two images into a single one as the amplitudes of fractional Fourier transform with different orders. From the encrypted image we can get two original images independently by fractional Fourier transforms with two different fractional orders. This algorithm can be independent of additional random phases as the encryption/decryption keys. Numerical results are given to analyze the capability of this proposed method. A possible extension to multi-image encryption with a fractional order multiplexing scheme has also been given.  相似文献   

15.
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.  相似文献   

16.
A novel technique, based on a modified Gerchberg–Saxton algorithm (MGSA) in the Fresnel-transform (FrT) domain, is proposed to encode a color image into three phase-only functions (POFs) for three separated channels: red (R), green (G), and blue (B). The decomposed three RBG channels can avoid the interference of crosstalks efficiently. In proposed decryption process, a color image can be promptly reconstructed by summing of the three decrypted RGB images after the created three POFs which are decrypted one by one. In this paper, all the created three POFs and the system parameters of FrT can be used as the keys for increasing security that are also demonstrated. The computer application simulations to the partial color encryption and decryption are given to validate the feasibility of the proposed scheme.  相似文献   

17.
A digital technique for multiplexing and encryption of four RGB images has been proposed using the fractional Fourier transform (FRT). The four input RGB images are first converted into their indexed image formats and subsequently multiplexed into a single image through elementary mathematical steps prior to the encryption. The encryption algorithm uses two random phase masks in the input- and the FRT domain, respectively. These random phase masks are especially designed using the input images. As the encryption is carried out through a single channel, the technique is more compact and faster as compared to the multichannel techniques. Different fractional orders, the random masks in input-, and FRT domain are the keys for decryption as well as de-multiplexing. The algorithms to implement the proposed multiplexing-, and encryption scheme are discussed, and results of digital simulation are presented. Simulation results show that the technique is free from cross-talk. The performance of the proposed technique has also been analyzed against occlusion, noise, and attacks using partial windows of the correct random phase keys. The robustness of the technique against known-, and chosen plain-text attacks has also been explained.  相似文献   

18.
An encryption technique based on the modulo operation is proposed. The technique is a one-to-one encryption–decryption single key algorithm. Fractal images are proposed to be used as a source of randomness to generate strong keys. The use of the proposed method is verified, both in the single image encryption–decryption, and in a real-time streaming application. The described algorithm provides a mechanism for controlling the strength of the keys. The advantages of the proposed method are discussed. A video setup is built and GUI software implemented to practically test this method. Numerical results of the test are provided and analyzed. Overall, the theoretically anticipated results are achieved, and the algorithm proven to be adept for real world cryptographic applications.  相似文献   

19.
黄清龙  刘建岚 《光子学报》2008,37(10):2118-2123
基于多重菲涅耳衍射变换和相位密码板,设计了一种新的图像加密计算方法.待加密的明文图像在多重离散菲涅耳衍射变换和相位密码板的共同作用下,变换为一个具有随机码特征的密文矩阵;衍射距离和相位密码板是主要的密钥.只有当所有密钥都正确时,才能成功地解密密文.结果表明,该加密算法能抵抗JPEG有损压缩、图像剪切、重度噪音污染和重采样等攻击,因此该法具有较强的鲁棒性;由于很难破解多重密钥,所以该算法具有极高的安全性.  相似文献   

20.
在传统的双随机相位光学加密系统的基础上,提出一种新的单强度记录光学加密技术。在加密时,将原始图像置于4-f系统的输入平面上进行双随机相位光学加密,利用CCD等感光器件记录输出平面上的光强分布作为密文,该光学加密过程只需一次曝光,在解密时,利用相位恢复算法进行迭代计算就可以由密文恢复原始图像。由于解密过程采用数字方式,因此可以在解密过程中引入各种数字图像处理技术来抑制散斑噪声,进一步改善解密图像质量。通过一系列仿真实验,证明该光学加密系统可以实现对二值图像和灰度图像的光学加密,并且能够很好地抵御已知明文攻击、选择明文攻击等方法的攻击。理论分析和计算机仿真表明,该光学加密技术系统结构简单,实现方便,并且不易受到各种攻击,安全性较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号